Abstract

Resolution of a surface immersion microscope has been studied as a function of surface-plasmon–polariton frequency. Enhancement of resolution near the surface-plasmon resonance has been observed. This effect may potentially be used in direct imaging of biological samples in liquid ambient.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kingslake, Optical System Design (Academic, London, 1983).
  2. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
    [CrossRef]
  3. I. I. Smolyaninov, New J. Phys. 5, 147.1 (2003).
    [CrossRef]
  4. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  5. R. C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1987).
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  7. I. I. Smolyaninov, “Far-field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging,” arXiv.org e-Print archive, cond-mat/0405098, May5, 2004, http://arxiv.org/abs/cond-mat/0405098 .

2003

I. I. Smolyaninov, New J. Phys. 5, 147.1 (2003).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Courjon, D.

D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Kingslake, R.

R. Kingslake, Optical System Design (Academic, London, 1983).

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Pohl, D. W.

D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Smolyaninov, I. I.

I. I. Smolyaninov, New J. Phys. 5, 147.1 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

New J. Phys.

I. I. Smolyaninov, New J. Phys. 5, 147.1 (2003).
[CrossRef]

Other

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

R. C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1987).

R. Kingslake, Optical System Design (Academic, London, 1983).

D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[CrossRef]

I. I. Smolyaninov, “Far-field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging,” arXiv.org e-Print archive, cond-mat/0405098, May5, 2004, http://arxiv.org/abs/cond-mat/0405098 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of a surface-plasmon immersion microscope. Plasmons are excited by laser light and propagate inside a parabolic-shaped droplet. Placing a sample near the focus of a parabola produces a 2D magnified image in the metal plane, which is viewed from the top by a regular microscope.

Fig. 2
Fig. 2

Glycerin droplets were formed in desired locations by bringing a small probe (a) wetted in glycerin into close proximity to a sample. Bringing the probe to a surface region covered with glycerin led to glycerin microdroplet formation (b) under the probe in locations indicated by the arrows. (c) Electron microscope image of the array of triplet nanoholes used as a test sample.

Fig. 3
Fig. 3

(a) Image of the triplet nanohole array obtained at 515 nm. The least-distorted part of the image is shown at higher zoom in (f). Comparison of (a) with the theoretically calculated (e) clearly proves the resolving power of the triplet structure. Spatial resolution is lost in (c), taken at 578 nm, which is also confirmed by Fourier analysis of the images in (b) and (d).

Fig. 4
Fig. 4

Images of the gaps in the 30 µm×30 µm periodic nanohole array. One of the gaps is indicated by an arrow in (a) the electron microscope image of the structure. Similar gaps are seen in (b) the plasmon microscope image and (c) its theoretical ray-optics reconstruction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

kp=ωcϵdϵmϵd+ϵm1/2,
ϵmω=-ϵdω,

Metrics