Abstract

We provide a theoretical explanation for a coherent probe-pump-based Brillouin sensor system that achieves centimeter spatial resolution with high-frequency resolution. It was recently discovered that, when a combination of cw and pulsed light (the probe beam) interacts with a cw laser (the pump beam), centimeter spatial resolution with high-frequency resolution can be achieved even though the probe-pulse duration is 1.5 ns [Opt. Lett. 29, 1485 (2004)]. Our study reveals that the coherent portion inside the pulse length of these two interactions caused by the same phase is responsible for this behavior. It allows us to detect 1.5-cm outer-layer cracks on an optical ground-wire cable.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Xiao and P. B. Nagy, J. Appl. Phys. 83, 7453 (1998).
    [CrossRef]
  2. Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
    [CrossRef]
  3. W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
    [CrossRef]
  4. L. Zou, G. A. Ferrier, S. Afshar V., Q. Yu, L. Chen, and X. Bao, Appl. Opt. 43, 1583 (2004).
    [CrossRef] [PubMed]
  5. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 18, 1561 (1993).
    [CrossRef]
  6. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  7. L. Zou, X. Bao, S. Afshar V., and L. Chen, Opt. Lett. 29, 1485 (2004).
    [CrossRef] [PubMed]
  8. S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, Opt. Lett. 28, 1418 (2003).
    [CrossRef]

2004 (2)

2003 (1)

2002 (1)

Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
[CrossRef]

2001 (1)

W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
[CrossRef]

1998 (1)

H. Xiao and P. B. Nagy, J. Appl. Phys. 83, 7453 (1998).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1993 (1)

Afshar V., S.

Bao, X.

Chen, L.

Conte, J. P.

W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
[CrossRef]

Ferrier, G. A.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Jackson, D. A.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Nagy, P. B.

H. Xiao and P. B. Nagy, J. Appl. Phys. 83, 7453 (1998).
[CrossRef]

Okabe, Y.

Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
[CrossRef]

Schulz, W. L.

W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Takeda, N.

Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
[CrossRef]

Tanaka, N.

Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
[CrossRef]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Udd, E.

W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
[CrossRef]

Webb, D. J.

Xiao, H.

H. Xiao and P. B. Nagy, J. Appl. Phys. 83, 7453 (1998).
[CrossRef]

Yu, Q.

Zou, L.

Appl. Opt. (1)

J. Appl. Phys. (1)

H. Xiao and P. B. Nagy, J. Appl. Phys. 83, 7453 (1998).
[CrossRef]

J. Lightwave Technol. (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

W. L. Schulz, J. P. Conte, and E. Udd, Proc. SPIE 4330, 56 (2001).
[CrossRef]

Smart Mater. Struct. (1)

Y. Okabe, N. Tanaka, and N. Takeda, Smart Mater. Struct. 11, 892 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the electrical field before and after propagating through an EOM.

Fig. 2
Fig. 2

Brillouin spectra when looking at the region of SMF. (a) Pump–dc interaction results in the appearance of a Brillouin peak from PCF. (b) Peak from PCF disappears when the dc portion is reduced by 5 dB.

Fig. 3
Fig. 3

Brillouin profiles of pump–pulse interaction and the pump and the pulse interacting coherently with the pump and the dc component.

Fig. 4
Fig. 4

Experimental Brillouin profiles, an enlargement of Fig. 2, which is coincident with the numerical simulation shown in Fig. 3.

Fig. 5
Fig. 5

1.5-cm outer-layer crack on an OPGW cable. Inset, schematic of the OPGW cable.

Fig. 6
Fig. 6

Strain distributions along the OPGW cable.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Eout=22A1 cosωt+φ1+A2 cosωt+φ2,
Iout=Eout2=12I1+I2+2I1I21/2cosφt,
Eout=Adc cosωt+φdct<t0-τp/2,t>t0+τp/2Apulse cosωt+φpulset0-τp/2tt0+τp/2,
Eout=Adc cosωt+φdct<t0-τp/2,t>t0+τp/2adc cosωt+φpulse+apulse cosωt+φpulset0-τp/2tt0+τp/2,
Eout=Adc cosωt+φdc+adc cosωt+φpulseapulse cosωt+φpulse.

Metrics