Abstract

A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
    [CrossRef]
  2. G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).
  3. T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
    [CrossRef]
  4. L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).
  5. P. Ben-Abdallah, J. Quant. Spectrosc. Radiat. Transf. 60, 9 (1998).
    [CrossRef]
  6. S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
    [CrossRef]

2002

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

2000

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

1998

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

P. Ben-Abdallah, J. Quant. Spectrosc. Radiat. Transf. 60, 9 (1998).
[CrossRef]

1996

C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
[CrossRef]

Ben-Abdallah, P.

P. Ben-Abdallah, J. Quant. Spectrosc. Radiat. Transf. 60, 9 (1998).
[CrossRef]

Brahmi, L.

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

Cordeiro, P.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

Ellzey, J. L.

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

Fuentes, A.

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Griffin, D. W.

C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
[CrossRef]

Joulain, P.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Konsur, B.

C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
[CrossRef]

Legros, G.

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Megaridis, C. M.

C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
[CrossRef]

Mehta, S. N.

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

Rouvreau, S.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

Torero, J. L.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Vantelon, J. P.

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Vietoris, T.

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

Wang, H. Y.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

Entropie

L. Brahmi, T. Vietoris, P. Joulain, and J. L. Torero, Entropie 215, 69 (1998).

J. Quant. Spectrosc. Radiat. Transf.

P. Ben-Abdallah, J. Quant. Spectrosc. Radiat. Transf. 60, 9 (1998).
[CrossRef]

Proc. Combust. Inst.

S. Rouvreau, P. Joulain, H. Y. Wang, P. Cordeiro, and J. L. Torero, Proc. Combust. Inst. 29, 2527 (2002).
[CrossRef]

C. M. Megaridis, B. Konsur, and D. W. Griffin, Proc. Combust. Inst. 26, 1291 (1996).
[CrossRef]

T. Vietoris, J. L. Ellzey, P. Joulain, S. N. Mehta, and J. L. Torero, Proc. Combust. Inst. 28, 2883 (2000).
[CrossRef]

Other

G. Legros, P. Joulain, J. P. Vantelon, A. Fuentes, and J. L. Torero, “Soot Volume Fraction Measurements in a Three-Dimensional Laminar Diffusion Flame Established in Microgravity,” Combust. Sci. Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gray-scale side view of the visible flame for V o x = 150 mm s 1 and V F = 3.3 mm s 1 .

Fig. 2
Fig. 2

Data acquisition method: media stratification on the right and k th ray projection on the layer i on the left.

Fig. 3
Fig. 3

(a) Experimental setup and (b) frame recorded when the LED is on (the same conditions as for Fig. 1).

Fig. 4
Fig. 4

(a) Absorption field (in inverse millimeters) in the layer located at z = 14.5 mm . The caret indicates the source positions. (b) Absorption profiles at y = 0 . The arrows indicate the visible flame height.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G ( M ) = { ψ i ( x , y ) , z [ z i h i 2 ; z i + h i 2 ] ; i = 1 , N } ,
T n k ( r ) = i = 1 N h i 2 h i 2 ψ i ( r + d k i + s l k ) d s ,
T n k ( r ) = log [ t n k ( r ) ] ,
d k i = ( z i tan θ k cos φ k , z i tan θ k sin φ k ) .
l k = ( tan θ k cos φ k , tan θ k sin φ k ) .
T ̂ n k ( w ) = i = 1 N R 2 h i 2 h i 2 ψ i ( r + d k i + s l k ) d s e 2 π r , w d r ,
i = 1 N sin ( π h i l k , w ) e 2 j π d k i , w π l k , w ψ ̂ i ( w ) = T ̂ n k ( w ) .

Metrics