Abstract

We present semiquantitative photoacoustic images of small nanoparticle-containing objects having a wide range of contrast levels relative to the background. The images are obtained by a finite-element reconstruction algorithm that is based on the Helmholtz-like photoacoustic wave equation in the frequency domain. Our reconstruction approach is an iterative Newton method coupled with combined Marquardt and Tikhonov regularizations that can extract the spatial distribution of relative optical absorption property in heterogeneous media. We demonstrate experimental images in single- and multiple-object configurations with a circular scanning photoacoustic tomographic system. The results obtained show that millimeter-size nanoparticle-containing objects can be clearly detected in terms of position, size, and relative optical properties.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
    [CrossRef]
  2. A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
    [CrossRef]
  3. C. G. A. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, Opt. Lett. 23, 648 (1998).
    [CrossRef]
  4. J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
    [CrossRef]
  5. R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
    [CrossRef] [PubMed]
  6. P. Liu, Phys. Med. Biol. 43, 667 (1998).
    [CrossRef] [PubMed]
  7. K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
    [CrossRef]
  8. G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
    [CrossRef] [PubMed]
  9. X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
    [CrossRef]
  10. S. J. Norton and T. Vo-Dinh, J. Opt. Soc. Am. A 20, 1859 (2003).
    [CrossRef]
  11. A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
    [CrossRef]
  12. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
    [CrossRef] [PubMed]

2004

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

2003

2002

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

2001

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

1999

R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
[CrossRef] [PubMed]

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
[CrossRef]

1998

1986

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Andreev, V.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Chen, Z.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

de Mul, F. F.

Dekker, A.

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Esenaliev, R.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Fleming, D.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Frauchiger, D.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Frenz, M.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Fry, E.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Hoelen, C. G. A.

Jacques, S.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Karabutov, A.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
[CrossRef]

Kostli, K. P.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Kruger, G.

R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
[CrossRef] [PubMed]

Liu, P.

P. Liu, Phys. Med. Biol. 43, 667 (1998).
[CrossRef] [PubMed]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Nelson, J.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Niederhauser, J.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Norton, S. J.

Oraevsky, A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
[CrossRef]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Paltauf, G.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Pongers, R.

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Prahl, S.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

Reinecke, D.

R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
[CrossRef] [PubMed]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Savateeva, E.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
[CrossRef]

Singh, H.

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

Tam, A. C.

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Viator, J.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Vo-Dinh, T.

Wang, L.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Wang, X.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Weber, H.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

Xu, M.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Xu, Y.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Yokoo, S.

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. P. Kostli, D. Frauchiger, J. Niederhauser, G. Paltauf, H. Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7, 918 (2001).
[CrossRef]

J. Acoust. Soc. Am.

G. Paltauf, J. Viator, S. Prahl, and S. Jacques, J. Acoust. Soc. Am. 112, 1536 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lasers Surg. Med.

J. A. Viator, G. Au, G. Paltauf, S. Jacques, S. Prahl, H. Ren, Z. Chen, and J. Nelson, Lasers Surg. Med. 30, 141 (2002).
[CrossRef]

Med. Phys.

R. A. Kruger, D. Reinecke, and G. Kruger, Med. Phys. 26, 1832 (1999).
[CrossRef] [PubMed]

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. Fry, and L. Wang, Med. Phys. 29, 2799 (2002).
[CrossRef]

Mol. Imaging Biol.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

P. Liu, Phys. Med. Biol. 43, 667 (1998).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Oraevsky, V. Andreev, A. Karabutov, D. Fleming, Z. Gatalica, H. Singh, and R. Esenaliev, in Proc. SPIE 3597, 352 (1999).
[CrossRef]

A. A. Karabutov, E. Savateeva, and A. Oraevsky, in Proc. SPIE 3601, 284 (1999).
[CrossRef]

Rev. Mod. Phys.

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

TEM image of the gold nanoparticles synthesized.

Fig. 2
Fig. 2

Reconstructed optical absorption images. a, Single target containing 0.25 nM nanoparticles. b, c, d, Two targets containing 0.5, 0.25, and 0.125 nM nanoparticles in each target, respectively. Note that the two targets were placed at different positions for b, c, and d. The scale indicates the relative optical absorption (dimensionless), while the left and bottom axes refer to spatial coordinates in millimeters.

Fig. 3
Fig. 3

Optical absorption profiles along a transect through one of the two targets for the images shown in Figs. 2(b), 2(c), 2(d).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 p ( r , ω ) + k 0 2 p ( r , ω ) = i k 0 c 0 β Φ ( r ) C p ,
p = i = 1 N p i ϕ i , Φ = i = 1 N Φ i ϕ i ,
A p = b Φ ,
a m n = V ( ϕ m ϕ n k 0 2 ϕ m ϕ n ) d V + Γ ( ϕ m ϕ n n ̂ ) d Γ ,
b m n = V ( i k 0 β c ϕ m ϕ n C p ) d V ,
Φ = { Φ r , 1 , Φ i , 1 , Φ r , 2 , Φ i , 2 , , Φ r , N , Φ i , N } T ,
p = { p r , 1 , p i , 1 , p r , 2 , p i , 2 , , p r , N , p i , N } T ,
ϕ n n ̂ = η ϕ n + γ 2 ϕ n 2 θ ,
η = i k 3 2 ρ + i 3 8 k ρ 2 1 i k ρ , γ = i 2 k ρ 2 1 i k ρ ,
p o = p c + p c Φ r Δ Φ r + p c Φ i Δ Φ i + .
( J T J + λ I ) Δ χ = J T ( p o p c ) ,

Metrics