Abstract

A novel two-section integrated mode-locked laser diode (MLLD) with a separate ultrafast uni-traveling carrier (UTC) saturable absorber section and semiconductor optical amplifier gain section is demonstrated. The UTC absorber is composed of a thin p-InGaAsP absorbing layer and an intrinsic InGaAsP collecting layer. By confining the photoexcitation process to the thin highly doped absorbing layer, the diffusion-limited hole extraction process is greatly enhanced. The investigated MLLD produces 600 fs uncompressed optical pulses at a 42 GHz repetition rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
    [CrossRef]
  2. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).
  3. K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
    [CrossRef]
  4. C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
    [CrossRef]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
    [CrossRef]
  6. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
    [CrossRef]
  7. R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.
  8. S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
    [CrossRef]

2002 (3)

K. R. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
[CrossRef]

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

2001 (1)

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

2000 (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

1996 (1)

S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
[CrossRef]

1994 (1)

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

Arahira, S.

S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
[CrossRef]

Avrutin, E. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Bergman, K.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Erni, D.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Furuta, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Gini, E.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Ishibashi, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

Ito, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Jäckel, H.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Knox, W. H.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Kobayashi, T.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

Kodama, S.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Kurishima, K.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

Lohe, H.-J.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Marsh, J. H.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Matsui, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
[CrossRef]

Matsuoka, Y.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

McDougall, S. D.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Miyamoto, Y.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Nagatsuma, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Nakajima, H.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

Ogawa, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
[CrossRef]

Robin, F.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Roth, J. M.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Sato, K.

Scollo, R.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Shimizu, N.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Street, M. W.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Tamura, K. R.

Thayne, I. G.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Vogt, W.

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Xu, C.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Yanson, D. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, Appl. Phys. Lett. 78, 3571 (2001).
[CrossRef]

Electron. Lett. (1)

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, IEEE J. Quantum Electron. 38, 1 (2002).
[CrossRef]

S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron. 32, 1211 (1996).
[CrossRef]

IEEE Trans. Electron Devices (1)

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, IEEE Trans. Electron Devices 41, 1319 (1994).
[CrossRef]

IEICE Trans. Electron. (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, IEICE Trans. Electron. E83-C, 938 (2000).

Opt. Lett. (1)

Other (1)

R. Scollo, H.-J. Lohe, F. Robin, D. Erni, W. Vogt, E. Gini, and H. Jäckel, in Proceedings of the IEEE/LEOS Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE, 2004), pp. 99–100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic band diagram of the ultrafast UTC absorber and (b) the complete structure of the MLLD. The regrown L a = 70 μ m long UTC absorber section is composed of a thin ( w a = 50 nm ) p -InGaAsP absorbing layer and a thick ( w c = 170 nm ) intrinsic InGaAsP collecting layer. The L g = 930 μ m long gain section is composed of InGaAsP InGaAs multiple quantum wells and two InGaAsP cladding layers.

Fig. 2
Fig. 2

Autocorrelation function of the UTC MLLD output with a 3 V reverse bias on the absorber section. The spectrum of the modulated THz envelope is shown in the inset.

Fig. 3
Fig. 3

Autocorrelation function of the UTC MLLD output with a 1 V reverse bias on the absorber section. The spectrum of the modulated THz envelope is shown in the inset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i ( τ ) = k 1 -photon E 1 ( t τ ) + E 2 ( t ) 2 d t + k 2 -photon E 1 ( t τ ) + E 2 ( t ) 4 d t ,

Metrics