Abstract

Solving the elastic wave equation exactly for a GeO2-doped silica fiber with a steplike distribution of the longitudinal and shear velocities and density, we have obtained the dispersion, attenuation, and fields of the leaky acoustic modes supported by the fiber. We have developed a model for stimulated Brillouin scattering of these modes in a pump–probe configuration and provided their Brillouin gains and frequencies for an extended range of core sizes and GeO2 doping. Parameter ranges close to cutoff of the acoustic modes and pump depletion enhance the ratio of higher-order peaks to the main peak in the Brillouin spectrum and are suitable for simultaneous strain–temperature sensing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 18, 552 (1993).
    [CrossRef] [PubMed]
  2. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1841 (1997).
    [CrossRef]
  3. A. Yeniay, J.-M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  4. C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
    [CrossRef]
  5. L. Zou, X. Bao, S. Afshar V., and L. Chen, Opt. Lett. 29, 1485 (2004).
    [CrossRef] [PubMed]
  6. N. Shibata, K. Okamoto, and Y. Azuma, J. Opt. Soc. Am. B 6, 1167 (1989).
    [CrossRef]
  7. J. W. Yu, Y. Park, K. Oh, and I. B. Kwon, Opt. Express 10, 996 (2002).
    [CrossRef] [PubMed]
  8. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, J. Lightwave Technol. 22, 631 (2004).
    [CrossRef]
  9. N. Lagakos, J. A. Bucaro, and R. Hughes, Appl. Opt. 19, 3668 (1980).
    [CrossRef] [PubMed]
  10. R. A. Waldron, IEEE Trans. Microwave Theory Tech. 17, 893 (1969).
    [CrossRef]
  11. S. Afshaarvahid and J. Munch, J. Nonlinear Opt. Phys. Mater. 10, 1 (2001).
    [CrossRef]
  12. S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, Opt. Lett. 28, 1418 (2003).
    [CrossRef]

2004 (2)

2003 (1)

2002 (2)

2001 (2)

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

S. Afshaarvahid and J. Munch, J. Nonlinear Opt. Phys. Mater. 10, 1 (2001).
[CrossRef]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1841 (1997).
[CrossRef]

1993 (1)

1989 (1)

1980 (1)

1969 (1)

R. A. Waldron, IEEE Trans. Microwave Theory Tech. 17, 893 (1969).
[CrossRef]

Afshaarvahid, S.

S. Afshaarvahid and J. Munch, J. Nonlinear Opt. Phys. Mater. 10, 1 (2001).
[CrossRef]

Afshar V., S.

Azuma, Y.

Bao, X.

Bucaro, J. A.

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Chujo, W.

Delavaux, J.-M.

Ferrier, G. A.

Hughes, R.

Jackson, D. A.

Koyamada, Y.

Kwon, I. B.

Lagakos, N.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Munch, J.

S. Afshaarvahid and J. Munch, J. Nonlinear Opt. Phys. Mater. 10, 1 (2001).
[CrossRef]

Nakamura, S.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1841 (1997).
[CrossRef]

Oh, K.

Okamoto, K.

Park, Y.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1841 (1997).
[CrossRef]

Sato, S.

Shibata, N.

Sotobayashi, H.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1841 (1997).
[CrossRef]

Toulouse, J.

Waldron, R. A.

R. A. Waldron, IEEE Trans. Microwave Theory Tech. 17, 893 (1969).
[CrossRef]

Webb, D. J.

Yeniay, A.

Yu, J. W.

Zou, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Dispersion, (b) attenuation due to leakage, (c) and (d) displacement fields for acoustic modes in a fiber with the core radius R = 1.5 μ m and doping Δ = 18 wt. % at wavelength 1.55 μ m . The dashed curves in (a) and (c) are drawn for the case V S 1 = V S 2 and ρ 1 = ρ 2 . The dotted–dashed line in (a) is V = π ν β p , and its intersections give the Brillouin frequencies Ω B 1 B 3 .

Fig. 2
Fig. 2

(a)–(c) Brillouin gain coefficient g η for modes LR 1 LR 3 as a function of core radius for different doping concentrations Δ at acoustic frequency 10 GHz . Solid and dashed curves show the cases V S 1 V S 2 and V S 1 = V S 2 , respectively.

Fig. 3
Fig. 3

Brillouin frequencies of (solid) LR 1 , (dashed) LR 2 , and (dotted) LR 3 modes as a function of (a) core radius and (b) doping. The labels 1, 2 and 3 in (a) refer to the same dopings as Fig. 2, and the core radii in (b) are as indicated.

Fig. 4
Fig. 4

(a) Pump power loss versus frequency of a fiber with R = 1.5 μ m and Δ = 6 wt. % for a 20 mW pump. The probe beam contains a 100 mW (peak power) pulse and 50 mW cw base (curves 1–3) and a 10 mW pulse and 5 mW cw base (curve 4). The interaction lengths are (1) 1 m , (2) 400, and (3–4) 800 inside an 800 m fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( T ̂ j + P ̂ j ) A j = N ̂ j ( j = s , p ) .
( t + Γ η ) a η = ( i γ β η 2 64 π ω q ) a p a s * 0 F 2 F η * r d r ,
[ z + ( n ¯ c ) t ] a s = a p η g η w η * ( z , t ) ,
[ z ( n ¯ c ) t ] a p = a s η g η w η ( z , t ) ,

Metrics