Abstract

We demonstrate a tunable deep-ultraviolet coherent source generated by the beating of a tunable UV laser and strongly driven vibrational Raman coherence in hydrogen. The total energy conversion efficiency reaches a maximum of 50% at the phase side of the Raman coherence. The generated spectrum of Raman sidebands tunes with the input and extends from 435to146nm for an input at 282nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Opt. Lett. 19, 2018 (1994).
    [CrossRef] [PubMed]
  2. S. E. Harris and A. V. Sokolov, Phys. Rev. A 55, R4019 (1997).
    [CrossRef]
  3. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
    [CrossRef] [PubMed]
  4. D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, Opt. Lett. 27, 769 (2002).
    [CrossRef]
  5. A. V. Sokolov, S. J. Sharpe, M. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Opt. Lett. 26, 728 (2001).
    [CrossRef]
  6. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
    [CrossRef] [PubMed]
  7. G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
    [CrossRef]
  8. M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
    [CrossRef]
  9. H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
    [CrossRef]
  10. H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
    [CrossRef]
  11. T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
    [CrossRef]
  12. V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
    [CrossRef]
  13. S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, Opt. Lett. 20, 848 (1995).
    [CrossRef] [PubMed]
  14. E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
    [CrossRef]
  15. C.-K. Ni and A. H. Kung, Appl. Opt. 37, 530 (1998).
    [CrossRef]
  16. A. H. Kung, W. -J. Chen, and S. W. Huang, “Collision assisted vibrational molecular modulation in hydrogen,” submitted to Phys. Rev. Lett.

2004 (1)

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

2002 (2)

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, Opt. Lett. 27, 769 (2002).
[CrossRef]

2001 (1)

2000 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

S. E. Harris and A. V. Sokolov, Phys. Rev. A 55, R4019 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

1990 (1)

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

1989 (2)

T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
[CrossRef]

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

1987 (1)

H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Bornemann, T.

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

Chen, W. -J.

A. H. Kung, W. -J. Chen, and S. W. Huang, “Collision assisted vibrational molecular modulation in hydrogen,” submitted to Phys. Rev. Lett.

Cromwell, E.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

Döbele, H. F.

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Hakuta, K.

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

Hara, K.

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

Harris, S. E.

Hörl, M.

H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Huang, S. W.

A. H. Kung, W. -J. Chen, and S. W. Huang, “Collision assisted vibrational molecular modulation in hydrogen,” submitted to Phys. Rev. Lett.

Imasaka, T.

T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
[CrossRef]

Ishibashi, N.

T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
[CrossRef]

Kasai, A.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Katsuragawa, M.

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

Kawasaki, S.

T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
[CrossRef]

Kien, F. L.

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

Kornas, V.

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

Kung, A. H.

C.-K. Ni and A. H. Kung, Appl. Opt. 37, 530 (1998).
[CrossRef]

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

A. H. Kung, W. -J. Chen, and S. W. Huang, “Collision assisted vibrational molecular modulation in hydrogen,” submitted to Phys. Rev. Lett.

Lee, G. J.

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

Lee, Y. T.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

Liang, J. Q.

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

Moriwaki, H.

S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, Opt. Lett. 20, 848 (1995).
[CrossRef] [PubMed]

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Nakamura, A.

S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, Opt. Lett. 20, 848 (1995).
[CrossRef] [PubMed]

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Ni, C.-K.

Röwekamp, M.

H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Schulz-Von Der Gathen, V.

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

Sharpe, S. J.

Shverdin, M.

Sokolov, A. V.

A. V. Sokolov, S. J. Sharpe, M. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Opt. Lett. 26, 728 (2001).
[CrossRef]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, Phys. Rev. A 55, R4019 (1997).
[CrossRef]

Tashiro, H.

S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, Opt. Lett. 20, 848 (1995).
[CrossRef] [PubMed]

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Toyoda, K.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Trickl, T.

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

Wada, S.

S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, Opt. Lett. 20, 848 (1995).
[CrossRef] [PubMed]

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

Walker, D. R.

Yavuz, D. D.

Yin, G. Y.

Appl. Opt. (1)

Appl. Phys. B (2)

H. F. Döbele, M. Hörl, and M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Schulz-Von Der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, IEEE J. Quantum Electron. 26, 739 (1990).
[CrossRef]

J. Appl. Phys. (1)

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, J. Appl. Phys. 74, 2175 (1993).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

G. J. Lee, K. Hara, M. Katsuragawa, and K. Hakuta, J. Nonlinear Opt. Phys. Mater. 13, 433 (2004).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (2)

M. Katsuragawa, J. Q. Liang, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 025801 (2002).
[CrossRef]

S. E. Harris and A. V. Sokolov, Phys. Rev. A 55, R4019 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85, 562 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. Cromwell, T. Trickl, Y. T. Lee, and A. H. Kung, Rev. Sci. Instrum. 60, 2888 (1989).
[CrossRef]

Other (1)

A. H. Kung, W. -J. Chen, and S. W. Huang, “Collision assisted vibrational molecular modulation in hydrogen,” submitted to Phys. Rev. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and energy-level diagram for tunable collinear Raman generation with three lasers. Raman detuning Δ ω (positive as shown) is set by the driving laser’s frequencies. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Generated Stokes and anti-Stokes pulse energy versus detuning from Raman resonance. Triangles, third Stokes; squares, first anti-Stokes; stars, third anti-Stokes. Inset, the sixth to eighth anti-Stokes orders, as indicated.

Fig. 3
Fig. 3

Energy conversion of the tunable pulse to the Raman sidebands as a function of detuning Δ ω . Circles, sum of energy of all generated Raman sidebands. The stars represent the first anti-Stokes energy; the squares, the residual third pulse energy after passing through the H 2 cell; and the triangles, the sum of the circles and the squares. The solid curves are fits to the data for visual guidance only. The incident pulse was 0.35 mJ at 282 nm .

Fig. 4
Fig. 4

Conversion efficiency of the third pulse to the Raman sidebands. The points represent the highest conversion taken at the optimal detuning for each order. The optimal detuning for each sideband order is different (see Fig. 2). Inset, measured first and eighth anti-Stokes order output versus the input pulse energy in millijoules.

Fig. 5
Fig. 5

Wavelength tunability of the collinear output. Each curve is a spectrum recorded by scanning the monochromator: (a) 1–6 are six input wavelengths obtained by tuning the dye laser; (b) the corresponding fourth anti-Stokes emission. The peak intensity in each spectrum has been normalized to unity. The width of each spectrum shown is limited by the resolution of the monochromator.

Metrics