Abstract

The spectral bandwidth of a high-power laser-diode array was effectively suppressed by use of an off-axis external-cavity technique. The external cavity consisted of a beam-transformation system and a pair of off-axis volume Bragg gratings. During operation at a drive current of 40 A, we reduced the bandwidth’s full width at half-maximum from 3.3 to 0.24 nm (14-fold reduction) and achieved an output power of 20 W, or as much as 87% of the power radiated by a free-running laser-diode array without an external cavity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Voumard, Opt. Lett. 1, 61 (1977).
    [CrossRef] [PubMed]
  2. I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
    [CrossRef]
  3. B. Chann, I. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
    [CrossRef]
  4. M. V. Romalis, Appl. Phys. Lett. 77, 1080 (2000).
    [CrossRef]
  5. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, Opt. Lett. 29, 1891 (2004).
    [CrossRef] [PubMed]
  6. F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
    [CrossRef]
  7. Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
    [CrossRef]
  8. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, Opt. Lett. 20, 898 (1995).
    [CrossRef] [PubMed]
  9. S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).
  10. V. Lissotschenko and A. Mikhailov, “Assembly and device for optical beam transformation,” U.S. patent 6,471,372B1 (October 29, 2002).
  11. Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
    [CrossRef]

2004 (3)

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, Opt. Lett. 29, 1891 (2004).
[CrossRef] [PubMed]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

2003 (1)

F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
[CrossRef]

2000 (3)

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

M. V. Romalis, Appl. Phys. Lett. 77, 1080 (2000).
[CrossRef]

1995 (1)

1977 (1)

Ban, V. S.

Chann, B.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

Chiba, K.

S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, Opt. Lett. 20, 898 (1995).
[CrossRef] [PubMed]

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

Daimon, M.

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

Dolgy, S. V.

Downs, E.

Eichler, H. J.

F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
[CrossRef]

Gao, X.

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Hermerschmidt, A.

F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
[CrossRef]

Kan, H.

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

Kobayashi, T.

S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, Opt. Lett. 20, 898 (1995).
[CrossRef] [PubMed]

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

Lissotschenko, V.

V. Lissotschenko and A. Mikhailov, “Assembly and device for optical beam transformation,” U.S. patent 6,471,372B1 (October 29, 2002).

Melnik, E. D.

Mikhailov, A.

V. Lissotschenko and A. Mikhailov, “Assembly and device for optical beam transformation,” U.S. patent 6,471,372B1 (October 29, 2002).

Miyajima, H.

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Nelson, I.

Nelson, I. A.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Romalis, M. V.

M. V. Romalis, Appl. Phys. Lett. 77, 1080 (2000).
[CrossRef]

Saito, Y.

S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, Opt. Lett. 20, 898 (1995).
[CrossRef] [PubMed]

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

Shaw, J.

Volodin, B. L.

Voumard, C.

Walker, T. G.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

Wang, F.

F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
[CrossRef]

Yamaguchi, S.

S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, Opt. Lett. 20, 898 (1995).
[CrossRef] [PubMed]

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

Zheng, Y.

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

M. V. Romalis, Appl. Phys. Lett. 77, 1080 (2000).
[CrossRef]

J. Appl. Phys. (1)

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, J. Appl. Phys. 95, 6489 (2004).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

Y. Zheng, X. Gao, H. Miyajima, and H. Kan, Jpn. J. Appl. Phys., Part 2 43, L1299 (2004).
[CrossRef]

Opt. Commun. (1)

F. Wang, A. Hermerschmidt, and H. J. Eichler, Opt. Commun. 218, 135 (2003).
[CrossRef]

Opt. Lett. (4)

Other (2)

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” U.S. patent 5,513,201 (April 30, 1996).

V. Lissotschenko and A. Mikhailov, “Assembly and device for optical beam transformation,” U.S. patent 6,471,372B1 (October 29, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for an off-axis external-cavity LDA: (a) three-dimentional view, (b) side view.

Fig. 2
Fig. 2

Spectral profiles of the output beam: (a) without the VBGs, (b) with VBG1, (c) with VBG2, (d) with VBG1 and VBG2.

Fig. 3
Fig. 3

Output power and output efficiency of the external cavity versus driver current: triangles, output power without the VBGs; squares, output power of the external cavity with VBG1 and VBG2; circles, output efficiency of the external cavity with VBG1 and VBG2.

Fig. 4
Fig. 4

Far-field divergence profiles: (a) without the two VBGs, (b) with the two VBGs.

Metrics