Abstract

A new design for an all-silicon field-effect optical modulator in a ring resonator geometry is proposed and modeled by means of finite-element method simulations. It is shown that the optimal relative placement of the ultrathin field-effect-generated charge layers and the optical mode in the strong-confinement waveguides leads to more than an order-of-magnitude enhancement in the light–charge interaction compared with the recent predictions in the literature. We show that such an enhancement could provide optical modulation with a >7dB extinction-ratio using a voltage swing of only 2V, thus making our design compatible with complementary metal-oxide semiconductor technology.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, Proc. IEEE 88, 728 (2000).
    [CrossRef]
  2. M. Lipson, Int. J. Nanotechnol. 15, S622 (2004).
    [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
    [CrossRef] [PubMed]
  4. C. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
    [CrossRef]
  5. C. Wang, M. Currie, S. Alexandrou, and T. Hsiang, Opt. Lett. 19, 1453 (1994).
    [CrossRef] [PubMed]
  6. M. Liu and S. Chou, Appl. Phys. Lett. 68, 170 (1996).
    [CrossRef]
  7. MEDICI Software, V. 2002.4.0 (Synopsis, Inc., www.synopsis.com).
  8. FEMLab Software, V. 3.0a (Comsol, Inc., www.comsol.com).
  9. L. Liao, “Low loss polysilicon waveguides for silicon photonics,” Ph.D. dissertation (Massachusetts Institute of Technology, 1997).
  10. J. Niehusmann, A. Vörckel, P. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, Opt. Lett. 29, 2861 (2004).
    [CrossRef]

2004

M. Lipson, Int. J. Nanotechnol. 15, S622 (2004).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

C. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

J. Niehusmann, A. Vörckel, P. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, Opt. Lett. 29, 2861 (2004).
[CrossRef]

2000

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

1996

M. Liu and S. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

1994

Alexandrou, S.

Barrios, C.

C. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

Bolivar, P.

Chou, S.

M. Liu and S. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Currie, M.

Henschel, W.

Hsiang, T.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Kurz, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

L. Liao, “Low loss polysilicon waveguides for silicon photonics,” Ph.D. dissertation (Massachusetts Institute of Technology, 1997).

Lipson, M.

C. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

M. Lipson, Int. J. Nanotechnol. 15, S622 (2004).
[CrossRef]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Liu, M.

M. Liu and S. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Niehusmann, J.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Vörckel, A.

Wahlbrink, T.

Wang, C.

Appl. Phys. Lett.

M. Liu and S. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

Int. J. Nanotechnol.

M. Lipson, Int. J. Nanotechnol. 15, S622 (2004).
[CrossRef]

J. Appl. Phys.

C. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Other

MEDICI Software, V. 2002.4.0 (Synopsis, Inc., www.synopsis.com).

FEMLab Software, V. 3.0a (Comsol, Inc., www.comsol.com).

L. Liao, “Low loss polysilicon waveguides for silicon photonics,” Ph.D. dissertation (Massachusetts Institute of Technology, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic and cross-sectional view of the Si-based modulator.

Fig. 2
Fig. 2

Charge density profile of the electron accumulation layer formed in the n-type c - Si bottom layer for gate voltages in the range 0 to 6 V .

Fig. 3
Fig. 3

Broadening and shift of resonance curves for 15 dB cm poly-Si loss at various gate voltages.

Fig. 4
Fig. 4

Extinction ratio versus applied voltage for various poly-Si loss values.

Fig. 5
Fig. 5

Change in effective index as a function of the charge-layer position for 15 dB cm poly-Si loss at various voltages.

Metrics