Abstract

We describe laser ablation of Si under water by 5 ns, 355 nm and 100 fs, 800 nm pulses. Compared to that in air, an approximately twofold improvement in the ablation rate is found in water for femtosecond and nanosecond pulses. For higher laser irradiances, the plasma that forms at the water–air interface hampers further improvement of the ablation rate. We investigated the enhanced ablation process in water and found that the cavity-confinement geometry that increases the laser energy coupling to the target and allows more energy to be transferred to the cavity sidewalls plays an important role in the escalated material removal process. In addition, we show that the water layer that effectively reduces the oxidation and redeposition of the ablated debris is also responsible for improvements in the ablation process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Gower, Opt. Express 7, 56 (2000).
    [CrossRef] [PubMed]
  2. M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
    [CrossRef]
  3. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
    [CrossRef]
  4. X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
    [CrossRef]
  5. Y. Li, J. Nishii, and Y. Jiang, Opt. Lett. 26, 1912 (2001).
    [CrossRef]
  6. L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
    [CrossRef]
  7. A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
    [CrossRef]
  8. P. K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995).
    [CrossRef]
  9. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  10. C. R. Phipps and R. W. Dreyfus, in Laser Ionization Mass Analysis, A. Vertes, R. Gijbels, and F. Adams, eds. (Wiley, 1993), pp. 369–431.
  11. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
    [CrossRef]
  12. A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
    [CrossRef]
  13. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
    [CrossRef]
  14. X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
    [CrossRef]

2003 (1)

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

2002 (1)

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

2001 (3)

Y. Li, J. Nishii, and Y. Jiang, Opt. Lett. 26, 1912 (2001).
[CrossRef]

A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

2000 (2)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

M. C. Gower, Opt. Express 7, 56 (2000).
[CrossRef] [PubMed]

1998 (4)

M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
[CrossRef]

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
[CrossRef]

1995 (1)

P. K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995).
[CrossRef]

1965 (1)

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Ashkenasi, D.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

Bartnicki, E.

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

Berthe, L.

A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
[CrossRef]

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

Campbell, E. E.B.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

Chen, X. Y.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

Ding, X.

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

Dreyfus, R. W.

C. R. Phipps and R. W. Dreyfus, in Laser Ionization Mass Analysis, A. Vertes, R. Gijbels, and F. Adams, eds. (Wiley, 1993), pp. 369–431.

Fabbro, R.

A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
[CrossRef]

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

Gower, M. C.

Greif, R.

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Hammer, D. X.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

Hong, M. H.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

Jiang, Y.

Kawaguchi, Y.

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Kennedy, P. K.

P. K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995).
[CrossRef]

Lauterborn, W.

A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
[CrossRef]

Li, Y.

Liu, C.

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Lu, Y. F.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

Mao, S. S

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Mao, X.

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Molian, P. A.

M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
[CrossRef]

Niino, H.

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

Nishii, J.

Noack, J.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

Noojin, G. D.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

Peyre, P.

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

Philipp, A.

A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
[CrossRef]

Phipps, C. R.

C. R. Phipps and R. W. Dreyfus, in Laser Ionization Mass Analysis, A. Vertes, R. Gijbels, and F. Adams, eds. (Wiley, 1993), pp. 369–431.

Rockwell, B. A.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

Rosenfeld, A.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

Russo, R. E.

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Shirk, M. D.

M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
[CrossRef]

Sollier, A.

A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
[CrossRef]

Stoian, R.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

Vogel, A.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

Yabe, A.

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

Zeng, X.

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Zhu, S.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (1)

X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003).
[CrossRef]

Eur. Phys. J. Appl. Phys. (2)

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998).
[CrossRef]

A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995).
[CrossRef]

J. Appl. Phys. (2)

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998).
[CrossRef]

J. Fluid Mech. (1)

A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
[CrossRef]

J. Laser Appl. (1)

M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E.B. Campbell, Phys. Rev. B 62, 167 (2000).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Other (1)

C. R. Phipps and R. W. Dreyfus, in Laser Ionization Mass Analysis, A. Vertes, R. Gijbels, and F. Adams, eds. (Wiley, 1993), pp. 369–431.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ablation rate of silicon versus laser irradiance in water and in air with (a) 100 fs, 800 nm femtosecond pulses and (b) 5 ns, 355 nm nanosecond pulses.

Fig. 2
Fig. 2

XPS depth profiles of Si and O at. % concentrations beneath the surface with 5 ns, 355 nm laser pulses at 8 GW cm 2 (a) in water, shallow crater 7 μ m ; (b) in water, deep crater 80 μ m ; (c) in air, shallow crater 7 μ m ; (d) in air, deep crater 80 μ m .

Fig. 3
Fig. 3

Ablation rate in water pulses number of versus with (a) 100 fs, 800 nm pulses at 6 × 10 13 W cm 2 and (b) 5 ns, 355 nm pulses at 8 GW cm 2 .

Fig. 4
Fig. 4

Profile of the ablation-generated craters on silicon after 100-pulse irradiation with 100 fs, 800 nm laser pulses at 1 × 10 14 W cm 2 (a) in water and (b) in air.

Tables (1)

Tables Icon

Table 1 Comparison of Water Breakdown Threshold Determined Modeling I th and Experiments I exp

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n d t = β n + P [ I ( t ) ] g n η r e c n ,

Metrics