Abstract

We demonstrate a subpicosecond 1 kHz femtosecond x-ray source with a well-accessible quasi-point size (10μm diameter) providing Cu Kα emission with a maximum flux of 6.8×1010  photonss for continuous operation of 10 h. A new geometry that essentially facilitates the adjustment and diminishes the temporal jitter between the x-ray probe and the laser pump pulse is implemented for time-resolved diffraction experiments.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Korn, A. Toss, H. Stiel, U. Voigt, M. Richardson, and T. Elsaesser, Opt. Lett. 27, 866 (2002).
    [CrossRef]
  2. Y. Jiang, T. Lee, W. Li, G. Ketwaroo, and C. G. Rose-Petruck, Opt. Lett. 27, 963 (2002).
    [CrossRef]
  3. N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
    [CrossRef]
  4. B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
    [CrossRef]
  5. C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
    [CrossRef] [PubMed]
  6. F. Ewald, H. Schwoerer, and R. Sauerbrey, Europhys. Lett. 60, 710 (2002).
    [CrossRef]
  7. P. Gibbon and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
    [CrossRef]
  8. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
    [CrossRef] [PubMed]
  9. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
    [CrossRef] [PubMed]

2004 (3)

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

2002 (3)

2000 (1)

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

1996 (1)

P. Gibbon and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

1992 (1)

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

Bargheer, M.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

Chamberlain, C. C.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Chen, L. M.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Elsaesser, T.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

G. Korn, A. Toss, H. Stiel, U. Voigt, M. Richardson, and T. Elsaesser, Opt. Lett. 27, 866 (2002).
[CrossRef]

Ewald, F.

F. Ewald, H. Schwoerer, and R. Sauerbrey, Europhys. Lett. 60, 710 (2002).
[CrossRef]

Förster, E.

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

P. Gibbon and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Gibbon, P.

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

P. Gibbon and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Gritsai, Y.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

Hou, B.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Jiang, Y.

Ketwaroo, G.

Kieffer, J.-C.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Kim, D. S.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

Korn, G.

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

G. Korn, A. Toss, H. Stiel, U. Voigt, M. Richardson, and T. Elsaesser, Opt. Lett. 27, 866 (2002).
[CrossRef]

Krol, A.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Kruer, W. L.

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

Langdon, A. B.

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

Lee, T.

Li, W.

Mourou, G.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Nees, J. A.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Reich, C.

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

Richardson, M.

Rose-Petruck, C. G.

Sauerbrey, R.

F. Ewald, H. Schwoerer, and R. Sauerbrey, Europhys. Lett. 60, 710 (2002).
[CrossRef]

Schwoerer, H.

F. Ewald, H. Schwoerer, and R. Sauerbrey, Europhys. Lett. 60, 710 (2002).
[CrossRef]

Stiel, H.

Tabak, M.

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

Theobald, W.

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Toss, A.

Uschmann, I.

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

Voigt, U.

Wilks, S. C.

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

Woerner, M.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

Woo, J. C.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

Zhavoronkov, N.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

Appl. Phys. B (1)

N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Appl. Phys. B 79, 663 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

B. Hou, J. A. Nees, W. Theobald, G. Mourou, L. M. Chen, J.-C. Kieffer, A. Krol, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
[CrossRef]

Europhys. Lett. (1)

F. Ewald, H. Schwoerer, and R. Sauerbrey, Europhys. Lett. 60, 710 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
[CrossRef] [PubMed]

C. Reich, P. Gibbon, I. Uschmann, and E. Förster, Phys. Rev. Lett. 84, 4846 (2000).
[CrossRef] [PubMed]

Plasma Phys. Controlled Fusion (1)

P. Gibbon and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Science (1)

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement: CuT, copper target; PlB, plastic band; Pos 1, Pos 2, positions of x-ray spectrometers for x-ray spectra detection in transmission and reflection geometries; BC, focusing Ge bent crystal; α, incidence angle of the laser beam (polarization vector of the laser beam lies in a plane of the figure).

Fig. 2
Fig. 2

Geometry of the laser–target interaction (inset); experimental knife-edge data (filled circles); error function fit to the experimental knife-edge data (dashed–dotted curve); corresponding Gaussian profile of the x-ray emitting area (solid curve); x-ray source image obtained with the Ge bent crystal (dashed curve, open triangles); laser spot (dotted curve).

Fig. 3
Fig. 3

X-ray spectra obtained from the Cu target. The spectrum from the Amptek spectrometer acquired in transmission geometry (main frame) and the spectrum from a scintillator-based spectrometer together with the best fit to the electron temperature T c = 19 keV (inset).

Fig. 4
Fig. 4

(a) X-ray total (squares) and K α (circles) fluxes measured in reflection (filled) and transmission (open) geometries; (b) electron temperature T e measured in reflection (filled circles) and transmission (open circles) and the energy conversion efficiency (triangles) as functions of the laser irradiance and laser pulse energy.

Metrics