Abstract

Two-channel lidar signals that are composed of total rotational scattering and elastic signals provide good information about aerosol scattering coefficients. We can calculate the aerosol backscattering coefficient and extinction coefficient directly, without making any assumption or calibration. Generally, a high-spectral-resolution lidar is used for aerosol monitoring, but we have designed a new low-spectral-resolution lidar system that contains both kinds of scattering information simultaneously, and we have retrieved the aerosol scattering coefficient. The results show that there is no need to assume any relation between aerosol backscattering and extinction or to consider any wavelength calibration to determine the aerosol scattering coefficient.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ansman, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, Appl. Opt. 31, 7113 (1992).
    [CrossRef]
  2. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, U. Wandinger, and D. N. Whiteman, Appl. Opt. 41, 3685 (2002).
    [CrossRef] [PubMed]
  3. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, Opt. Lett. 17, 541 (1992).
    [CrossRef] [PubMed]
  4. A. Ansman, M. Riebesell, and C. Weitkamp, Opt. Lett. 15, 746 (1990).
    [CrossRef]
  5. R. B. Miles, W. R. Lempert, and J. N. Forkey, Meas. Sci. Technol. 12, R33 (2001).
    [CrossRef]
  6. D. N. Whiteman, Appl. Opt. 42, 2571 (2003).
    [CrossRef] [PubMed]
  7. C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
    [CrossRef]
  8. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, IEEE Trans. Geosci. Remote Sens. 31, 90 (1993).
    [CrossRef]

2003 (1)

2002 (1)

2001 (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, Meas. Sci. Technol. 12, R33 (2001).
[CrossRef]

1993 (1)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, IEEE Trans. Geosci. Remote Sens. 31, 90 (1993).
[CrossRef]

1992 (2)

1990 (1)

1973 (1)

C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
[CrossRef]

Alvarez, R. J.

Ansman, A.

Caldwell, L. M.

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, IEEE Trans. Geosci. Remote Sens. 31, 90 (1993).
[CrossRef]

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, Meas. Sci. Technol. 12, R33 (2001).
[CrossRef]

Griaznov, V.

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, IEEE Trans. Geosci. Remote Sens. 31, 90 (1993).
[CrossRef]

Kolgotin, A.

Krueger, D. A.

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, Meas. Sci. Technol. 12, R33 (2001).
[CrossRef]

Michaelis, W.

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, Meas. Sci. Technol. 12, R33 (2001).
[CrossRef]

Muller, D.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, IEEE Trans. Geosci. Remote Sens. 31, 90 (1993).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, J. Atmos. Sci. 30, 1191 (1973).
[CrossRef]

Riebesell, M.

She, C. Y.

Veselovskii, I.

Wandinger, U.

Weitkamp, C.

Whiteman, D. N.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the rotational Raman lidar.

Fig. 2
Fig. 2

Traditional rotational and elastic lidar signals from a cirrus cloud.

Fig. 3
Fig. 3

Normalized aerosol backscattering coefficients.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin ( α ) + sin [ β ( λ ) ] = m λ d ,
P Ro ( z ) = C 1 z 2 β Ro exp { 2 0 z [ α mo λ ( z ) + α ae λ ( z ) ] d z } ,
P El ( z ) = C 2 z 2 ( β ae + β mo ) exp { 2 0 z [ α mo λ ( z ) + α ae λ ( z ) ] d z } ,
P El P Ro ( z ) = C 2 C 1 β ae ( z ) + β mo ( z ) β Ro ( z ) = C 2 C 1 N ( z ) d σ mo d Ω N ( z ) d σ Ro d Ω + C 2 C 1 β ae ( z ) β Ro ( z ) = C 2 C 1 C mo Ro + C 2 C 1 β ae ( z ) β Ro ( z ) .

Metrics