Abstract

We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object’s cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object’s cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Dines and S. A. Goss, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 309 (1987).
  2. D. M. Mittleman, S. Hunsche, L. Bovin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
  3. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).
  4. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, Opt. Lett. 27, 1312 (2002).
  5. K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
    [CrossRef]
  6. A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
    [CrossRef]
  7. T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).
    [CrossRef]
  8. T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A 19, 1432 (2002).
  9. J. O’Hara and D. Grischkowsky, Opt. Lett. 27, 1070 (2002).
  10. J. O’Hara and D. Grischkowsky, J. Opt. Soc. Am. B 21, 1178 (2004).
  11. M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
    [CrossRef]
  12. P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
    [CrossRef]
  13. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).
  14. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  15. R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

2004 (3)

T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).
[CrossRef]

J. O’Hara and D. Grischkowsky, J. Opt. Soc. Am. B 21, 1178 (2004).

R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

2002 (4)

2001 (2)

K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
[CrossRef]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).

2000 (1)

M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
[CrossRef]

1999 (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

1997 (1)

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

1987 (1)

K. A. Dines and S. A. Goss, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 309 (1987).

Abbot, D.

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Baraniuk, R. G.

T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A 19, 1432 (2002).

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

Baranuik, R.

R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

Bovin, L.

Buma, T.

T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).
[CrossRef]

Cheville, R. A.

K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
[CrossRef]

Choi, H.

R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

Decker, J.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Dines, K. A.

K. A. Dines and S. A. Goss, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 309 (1987).

Dorney, T. D.

T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A 19, 1432 (2002).

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).

Ferguson, B.

Goss, S. A.

K. A. Dines and S. A. Goss, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 309 (1987).

Gray, D.

Grischkowsky, D.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

Hor, L. L.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Hunsche, S.

Jiang, Z.

M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
[CrossRef]

Johnson, J. L.

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

McClatchey, K.

K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
[CrossRef]

Mittleman, D. M.

T. D. Dorney, W. W. Symes, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A 19, 1432 (2002).

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

D. M. Mittleman, S. Hunsche, L. Bovin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).

Neelamani, R.

R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

Norris, T. B.

T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, S. Hunsche, L. Bovin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

O’Hara, J.

Reiten, M. T.

K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
[CrossRef]

Rudd, J. V.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

Ruffin, A. B.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Sanchez-Palencia, L.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Symes, W. W.

Tani, M.

M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
[CrossRef]

Wang, S.

Whitacker, J. F.

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

Zhang, X.-C.

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, Opt. Lett. 27, 1312 (2002).

M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
[CrossRef]

Appl. Phys. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

Appl. Phys. Lett. (2)

K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001).
[CrossRef]

T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).
[CrossRef]

Electron. Lett. (1)

M. Tani, Z. Jiang, and X.-C. Zhang, Electron. Lett. 36, 804 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

A. B. Ruffin, J. V. Rudd, J. Decker, L. Sanchez-Palencia, L. L. Hor, J. F. Whitacker, and T. B. Norris, IEEE J. Quantum Electron. 38, 1110 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, IEEE J. Sel. Top. Quantum Electron. 7, 592 (2001).

IEEE Trans. Signal Process. (1)

R. Neelamani, H. Choi, and R. Baranuik, IEEE Trans. Signal Process. 52, 418 (2004).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

K. A. Dines and S. A. Goss, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 309 (1987).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Other (1)

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

THz WART setup. A THz transceiver illuminates a thin cross section of the object and measures the backreflected waves.

Fig. 2
Fig. 2

(a) WART image of a cylindrical metal post. (b) Slice through the center of the image in (a), showing bandwidth-limited resolution of the surface. (c) WART image of a more complex metal object, with surface features of size comparable to half of the coherence length. (d) Photograph of the test object imaged in (c).

Fig. 3
Fig. 3

THz WART images of the object shown in Fig. 2(c), reconstructed with subsets of the full data set. These images use (a) 180, (b) 120, (c) 72, and (d) 52 waveforms.

Fig. 4
Fig. 4

Correlation of an ideal image, formed by applying a binary threshold to the highest-quality image, with each reconstruction formed using subsets of the full data set. The solid curve is the result for the corrugated post [Fig. 2(c)], while the dashed curve shows the result for the circular post [Fig. 2(a)]. As the number of waveforms used for image reconstruction decreases, the correlation between the resulting image and the ideal image decreases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s ( θ , t ) = r ( t 2 u c ) p θ ( u ) d u ,
p θ ( u ) = f ( u cos θ s sin θ , u sin θ + s cos θ ) d s .

Metrics