Abstract

We present a method of analysis of images of dynamic speckle based on the filtering in frequency bands of the temporary history of each pixel. Butterworth filters are applied to the temporary evolution, and different images are constructed showing the energy in each frequency band. Different degrees of activity of the sample in study, presumably attributed to different origins, are found. The method is exemplified with images of bruising damage in fruits and of biological activity in germinating corn seeds. It is found that the activity in the bruised region of an apple differs from the activity of healthy regions in a certain characteristic frequency range. The activity of the embryo can also be distinguished from that of the endosperm in corn seeds during germination.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Aizu and T. Asakura, in Trends in Optics, A. Consortini, ed. (Academic, 1996), Chap. 2.
  2. T. Okamoto and T. Asakura, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1995), Vol. XXXIV, pp. 185.
  3. J. D. Briers, Opt. Eng. 32, 277 (1993).
    [CrossRef]
  4. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
    [CrossRef] [PubMed]
  5. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, Appl. Opt. 26, 5321 (1987).
    [CrossRef] [PubMed]
  6. N. Konishi and H. Fujii. Opt. Eng. 34, 753 (1995).
    [CrossRef]
  7. R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
    [CrossRef]
  8. G. J. Tearney and B. E. Bouma, Opt. Lett. 27, 533 (2002).
    [CrossRef]
  9. P. Yu, I. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, Opt. Lett. 29, 68 (2004).
    [CrossRef] [PubMed]
  10. H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, and T. Ohura, Opt. Lett. 10, 104 (1985).
    [CrossRef] [PubMed]
  11. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975), pp. 211.
  12. M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
    [CrossRef]

2004 (1)

2003 (1)

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

2002 (2)

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

G. J. Tearney and B. E. Bouma, Opt. Lett. 27, 533 (2002).
[CrossRef]

1996 (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef] [PubMed]

1995 (1)

N. Konishi and H. Fujii. Opt. Eng. 34, 753 (1995).
[CrossRef]

1993 (1)

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

1987 (1)

1985 (1)

Aizu, Y.

Y. Aizu and T. Asakura, in Trends in Optics, A. Consortini, ed. (Academic, 1996), Chap. 2.

Arizaga, R.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Asakura, T.

H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, and T. Ohura, Opt. Lett. 10, 104 (1985).
[CrossRef] [PubMed]

Y. Aizu and T. Asakura, in Trends in Optics, A. Consortini, ed. (Academic, 1996), Chap. 2.

T. Okamoto and T. Asakura, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1995), Vol. XXXIV, pp. 185.

Baldwin, G.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

Bouma, B. E.

Briers, J. D.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef] [PubMed]

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

Cap, N.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Fujii, H.

Ikawa, H.

Konishi, N.

N. Konishi and H. Fujii. Opt. Eng. 34, 753 (1995).
[CrossRef]

Melloch, M. R.

Mustata, M.

Nohira, K.

Nolte, D. D.

Ohura, T.

Okamoto, T.

T. Okamoto and T. Asakura, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1995), Vol. XXXIV, pp. 185.

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975), pp. 211.

Pajuelo, M.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

Peng, I.

Rabal, H. J.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975), pp. 211.

Shintomi, Y.

Tearney, G. J.

Trivi, M.

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Turek, J. J.

Webster, S.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef] [PubMed]

Yamamoto, Y.

Yu, P.

Appl. Opt. (1)

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef] [PubMed]

Opt. Eng. (3)

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

N. Konishi and H. Fujii. Opt. Eng. 34, 753 (1995).
[CrossRef]

R. Arizaga, N. Cap, H. J. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Opt. Lasers Eng. (1)

M. Pajuelo, G. Baldwin, H. J. Rabal, N. Cap, R. Arizaga, and M. Trivi, Opt. Lasers Eng. 40, 13 (2003).
[CrossRef]

Opt. Lett. (3)

Other (3)

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975), pp. 211.

Y. Aizu and T. Asakura, in Trends in Optics, A. Consortini, ed. (Academic, 1996), Chap. 2.

T. Okamoto and T. Asakura, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1995), Vol. XXXIV, pp. 185.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency bands in the Butterworth filters bank.

Fig. 2
Fig. 2

Results of the apple bruising experiment: (a) first band (0–0.125 Hz), (b) third band (0.250–0.375 Hz), (c) tenth band (1.125–1.250 Hz).

Fig. 3
Fig. 3

Incoherent image of a corn seed.

Fig. 4
Fig. 4

Results of the corn seed experiment: (a) first band (0–0.1 Hz), (b) second band (0.1–0.2 Hz), (c) third band (0.2–0.3 Hz), (d) fourth band (0.3–0.4 Hz), (e) fifth band (0.4–0.5 Hz), (f) sixth band (0.5–0.6 Hz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E b = n = 1 N p b 2 ( n ) ,

Metrics