Abstract

Photonic bandgap fibers for transverse illumination containing half-wavelength microcavities have recently been designed and fabricated. We report on the fabrication and characterization of an all-optical tunable microcavity fiber. The fiber is made by incorporating a photorefractive material inside a Fabry–Perot cavity structure with a quality factor Q>200 operating at 1.5μm. Under short-wavelength transverse external illumination, a 2 nm reversible shift of the cavity resonant mode is achieved. Dynamic all-optical tuning is reported at frequencies up to 400 Hz. Experimental results are compared with simulations based on the amplitude and kinetics of the transient photodarkening effect measured in situ in thin films.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
    [CrossRef]
  2. G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
    [CrossRef]
  3. S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
    [CrossRef]
  4. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, Opt. Express 11, 1175 (2003).
    [CrossRef] [PubMed]
  5. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
    [CrossRef]
  6. A. Ganjoo and K. Shimakawa, J. Optoelectron. Adv. Mater. 4, 595 (2002).
  7. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, 1999).
  8. A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, and J. N. McMullin, Opt. Express 10, 639 (2002).
    [CrossRef] [PubMed]
  9. K. Petkov, J. Optoelectron. Adv. Mater. 4, 611–629 (2002).
  10. P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  13. G. Benoit, Electronic database: http://mit-pbg.mit.edu/Pages/DataBase.html (MIT, 2005).
  14. Electronic Handbook of Optical Constants of Solids (SciVision, 1999).
  15. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
    [CrossRef] [PubMed]
  16. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  17. B. E.A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]

2004 (1)

S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
[CrossRef]

2003 (2)

2002 (4)

A. Ganjoo and K. Shimakawa, J. Optoelectron. Adv. Mater. 4, 595 (2002).

A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, and J. N. McMullin, Opt. Express 10, 639 (2002).
[CrossRef] [PubMed]

K. Petkov, J. Optoelectron. Adv. Mater. 4, 611–629 (2002).

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

1996 (1)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

1991 (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
[CrossRef]

1977 (1)

Agarwal, S. C.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
[CrossRef]

Benoit, G.

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

G. Benoit, Electronic database: http://mit-pbg.mit.edu/Pages/DataBase.html (MIT, 2005).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

DeCorby, R. G.

Engeness, T. D.

Fan, S.

S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
[CrossRef]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Fink, Y.

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, Opt. Express 11, 1175 (2003).
[CrossRef] [PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

Ganjoo, A.

A. Ganjoo and K. Shimakawa, J. Optoelectron. Adv. Mater. 4, 595 (2002).

Hart, S. D.

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

Haugen, C. J.

Hong, C.-S.

Ibanescu, M.

Jacobs, S.

Joannopoulos, J. D.

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Johnson, S. G.

Maskaly, G. R.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

McGahan, W. A.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, 1999).

McMullin, J. N.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Paesler, M. A.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
[CrossRef]

Petkov, K.

K. Petkov, J. Optoelectron. Adv. Mater. 4, 611–629 (2002).

Pfeiffer, G.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
[CrossRef]

Prideaux, P. H.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

Robinson, T.

Saleh, B. E.A.

B. E.A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Shimakawa, K.

A. Ganjoo and K. Shimakawa, J. Optoelectron. Adv. Mater. 4, 595 (2002).

Skorobogatiy, M.

Suh, W.

S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
[CrossRef]

Teich, M. C.

B. E.A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Temelkuran, B.

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

Tompkins, H. G.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, 1999).

van Popta, A. C.

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Weisberg, O.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

Yanik, M. F.

S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
[CrossRef]

Yariv, A.

Yeh, P.

P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Adv. Mater. (1)

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 15, 2053 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, J. Non-Cryst. Solids 130, 111 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Optoelectron. Adv. Mater. (2)

A. Ganjoo and K. Shimakawa, J. Optoelectron. Adv. Mater. 4, 595 (2002).

K. Petkov, J. Optoelectron. Adv. Mater. 4, 611–629 (2002).

Opt. Express (2)

Phys. Rev. B (1)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Proc. SPIE (1)

S. Fan, W. Suh, and M. F. Yanik, Proc. SPIE 5280, 134 (2004).
[CrossRef]

Science (1)

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, Science 296, 510 (2002).
[CrossRef] [PubMed]

Other (7)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

B. E.A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

G. Benoit, Electronic database: http://mit-pbg.mit.edu/Pages/DataBase.html (MIT, 2005).

Electronic Handbook of Optical Constants of Solids (SciVision, 1999).

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) In situ transmission measurements at 1.5 μ m on a 100-nm-thick As 2 Se 3 film (black curve) and fitting with a stretched exponential function (red curve). Illumination and dark times are indicated in green and gray, respectively. The intensity in the layer was 16 mW cm 2 . (b) Scanning electron micrographs of the cross section of a 910 - μ m -diameter fiber showing the As 2 Se 3 cavity layer (bright gray in the middle of the structure), the As 2 S 3 layers (intermediate gray) and the polymer layers (dark gray). (c) Measured (black line with dots) and computed (red line) reflectivity spectra for the 910 - μ m -diameter fiber. Fourier transform spectroscopy and NBR measurements have been superimposed.

Fig. 2
Fig. 2

(a) NBR and optical tuning experimental setups. (b) Left, shift of the cavity resonant mode to higher wavelengths under 574 mW cm 2 illumination. The dashed curves with dots correspond to NBR measurements; the solid curves correspond to TMM simulations. Right, 1.5 Hz modulation of the reflected power at three different probe wavelengths. 1497.5 and 1499.2 are indicated on the NBR spectra by red and green lines, respectively.

Fig. 3
Fig. 3

Measured (dashed black curves) and computed (gray solid curves) on–off ratios at 1497.5 nm for frequencies up to 400 Hz under two illumination powers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( t ) = T 0 Δ T max exp [ ( t τ ) β ] ,

Metrics