Abstract

We present a general design strategy for a broadband thin-film beam splitter with matched group-delay dispersion. By taking the substrate dispersion into account in the coating design, any combination of input and output can show the same dispersion for transmission and reflection. As a specific implementation, an ultrabroadband 50:50 beam splitter from 600to1500nm for femtosecond laser applications was designed, fabricated, and characterized.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
    [CrossRef]
  2. A. Bartels and H. Kurz, Opt. Lett. 27, 1839 (2002).
    [CrossRef]
  3. T. M. Fortier, D. J. Jones, and S. T. Cundiff, Opt. Lett. 28, 2198 (2003).
    [CrossRef] [PubMed]
  4. L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kärtner, Opt. Lett. 29, 1683 (2004).
    [CrossRef] [PubMed]
  5. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  6. T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
    [CrossRef]
  7. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001).
    [CrossRef]
  8. G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
    [CrossRef]
  9. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software” (Optilayer, Ltd., Moscow, Russia, 2003), http://www.optilayer.com/general.htm.
  10. V. Scheuer, M. Tilsch, and T. Tschudi, Proc. SPIE 2253, 445 (1994).
    [CrossRef]
  11. M. Tilsch, V. Scheuer, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
    [CrossRef]
  12. K. Naganuma, K. Mogi, and H. Yamada, Opt. Lett. 15, 393 (1990).
    [CrossRef] [PubMed]

2004

2003

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

T. M. Fortier, D. J. Jones, and S. T. Cundiff, Opt. Lett. 28, 2198 (2003).
[CrossRef] [PubMed]

2002

2001

1999

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1998

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

1994

V. Scheuer, M. Tilsch, and T. Tschudi, Proc. SPIE 2253, 445 (1994).
[CrossRef]

M. Tilsch, V. Scheuer, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

1990

Angelow, G.

Bartels, A.

Boiko, A.

Cundiff, S. T.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

Ell, R.

Fortier, T. M.

Fujimoto, J. G.

Giles, C. R.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Ippen, E. P.

Jones, D. J.

Kärtner, F. X.

Kim, J.

L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kärtner, Opt. Lett. 29, 1683 (2004).
[CrossRef] [PubMed]

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

Kleppner, D.

Kurz, H.

Kuzucu, O.

L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kärtner, Opt. Lett. 29, 1683 (2004).
[CrossRef] [PubMed]

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

Lederer, M. J.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

Luther-Davies, B.

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

Matos, L.

Mogi, K.

Morgner, U.

Naganuma, K.

Nykolak, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

Scheuer, V.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
[CrossRef]

F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001).
[CrossRef]

V. Scheuer, M. Tilsch, and T. Tschudi, Proc. SPIE 2253, 445 (1994).
[CrossRef]

M. Tilsch, V. Scheuer, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

Schibli, T.

Schibli, T. R.

L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kärtner, Opt. Lett. 29, 1683 (2004).
[CrossRef] [PubMed]

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software” (Optilayer, Ltd., Moscow, Russia, 2003), http://www.optilayer.com/general.htm.

Tilsch, M.

V. Scheuer, M. Tilsch, and T. Tschudi, Proc. SPIE 2253, 445 (1994).
[CrossRef]

M. Tilsch, V. Scheuer, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

Trubetskov, M. K.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software” (Optilayer, Ltd., Moscow, Russia, 2003), http://www.optilayer.com/general.htm.

Tschudi, T.

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Yamada, H.

IEEE J. Quantum Electron.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. R. Schibli, O. Kuzucu, J. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, IEEE J. Sel. Top. Quantum Electron. 9, 990 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak, IEEE Photonics Technol. Lett. 10, 567 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. SPIE

V. Scheuer, M. Tilsch, and T. Tschudi, Proc. SPIE 2253, 445 (1994).
[CrossRef]

M. Tilsch, V. Scheuer, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

Other

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software” (Optilayer, Ltd., Moscow, Russia, 2003), http://www.optilayer.com/general.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a beam splitter.

Fig. 2
Fig. 2

Lossless coating represented as a two-port system.

Fig. 3
Fig. 3

(a) Design result of transmission and reflection of coating. (b) Design result of GD in reflection and transmission of coating.

Fig. 4
Fig. 4

(a) Transmittance measurement result under a p-polarized, 45° incident angle. (b) GD measurement results: (1) design target (GD of 750 μ m fused silica up to a constant), (2) measured GD of reflection from the air side to the coating, (3) measured GD of reflection from the substrate side to the coating, and (4) measured GD of transmission through the coating and the substrate. (c) GDD measurement results: (1) design target (GDD of 750 μ m fused silica), (2) design result of GDD in reflection from the air side to the coating, (3) measured GDD of reflection from the air side to the coating; (4) measured GDD of reflection from the substrate side to the coating, and (5) measured GDD of transmission through the coating and the substrate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ a 1 b 1 ] = T [ a 2 b 2 ] , T = [ 1 t 1 r 1 * t 1 * r 1 t 1 1 t 1 * ] ,
t 2 = b 1 b 2 a 1 = 0 = t 1 , ϕ t 2 = ϕ t 1 ,
r 2 = a 2 b 2 a 1 = 0 = t 1 r 1 * t 1 * , ϕ r 2 = 2 ϕ t 1 ϕ r 1 + π .

Metrics