Abstract

Wave-front reconstruction for ultrabroadband laser pulses is verified by use of a Hartmann–Shack sensor. We estimate the accuracy of numerical wave-front propagation by comparing numerical with experimental results and verify that wave fronts of ultrabroadband laser pulses from a hollow fiber can be propagated correctly by a single polychromatic wave-front measurement to a place where detection is not practicable, e.g., inside a vacuum chamber or laser focus.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Albert, H. Wang, D. Liu, Z. Chang, and G. Mourou, Opt. Lett. 25, 1125 (2000).
    [CrossRef]
  2. J. Queneuille, F. Druon, A Maksimchuk, G. Cheriaux, G. Mourou, and K. Nemoto, Opt. Lett. 25, 508 (2000).
    [CrossRef]
  3. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, Opt. Lett. 29, 207 (2004).
    [CrossRef] [PubMed]
  4. L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
    [CrossRef]
  5. N. Streibel, Opt. Commun. 49, 6 (1984)
    [CrossRef]
  6. R. N. Smartt and W. H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975).
    [CrossRef]
  7. T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
    [CrossRef]
  8. D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
    [CrossRef]
  9. B. Schaefer and K. Mann, Appl. Opt. 41, 2809 (2002).
    [CrossRef]
  10. V. Laude, S. Olivier, C. Dirson, and J. P. Huignard, Opt. Lett. 24, 1796 (1999).
    [CrossRef]
  11. R. Grunwald, U. Neumann, U. Griebner, K. Reimann, G. Steinmeyer, and V. Kebbel, Opt. Lett. 28, 2399 (2003).
    [CrossRef] [PubMed]
  12. International Organization for Standardization, “Lasers and laser-related equipment—test methods for the shape of a laser beam wavefront,” ISO document ISO/TC 172/SC9 (ISO2003).
  13. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
    [CrossRef] [PubMed]
  14. J. Y. Wang and D. E. Silva, Appl. Opt. 19, 1510 (1980).
    [CrossRef] [PubMed]
  15. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, Opt. Lett. 22, 1562 (1997).
    [CrossRef]

2004 (1)

2003 (1)

2002 (1)

2000 (2)

1999 (1)

1997 (2)

1996 (1)

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

1995 (1)

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

1992 (1)

T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
[CrossRef]

1984 (1)

N. Streibel, Opt. Commun. 49, 6 (1984)
[CrossRef]

1980 (1)

1975 (1)

R. N. Smartt and W. H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975).
[CrossRef]

Albert, O.

Alford, W. J.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

Austin, L. W.

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

Bonora, S.

Chang, Z.

Cheng, Z.

Cheriaux, G.

De Silvestri, S.

DeSilvestri, S.

Dirson, C.

Druon, F.

Ferencz, K.

Giessen, A.

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

Griebner, U.

Gruetzner, J. K.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

Grunwald, R.

Huignard, J. P.

Kebbel, V.

Krausz, F.

Kuroda, K.

T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
[CrossRef]

Laude, V.

Lenzner, M.

Leslie, D. H.

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

Liu, D.

Maksimchuk, A

Mann, K.

Mourou, G.

Neal, D. R.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

Nemoto, K.

Neumann, U.

Nisoli, M.

Olivier, S.

Omatsu, T.

T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
[CrossRef]

Pascolini, M.

Poletto, L.

Queneuille, J.

Reimann, K.

Sansone, G.

Sartania, S.

Schaefer, B.

Silva, D. E.

Smartt, R. N.

R. N. Smartt and W. H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975).
[CrossRef]

Spielmann, C.

Spielmann, Ch.

Stagira, S.

Steel, W. H.

R. N. Smartt and W. H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975).
[CrossRef]

Steinmeyer, G.

Streibel, N.

N. Streibel, Opt. Commun. 49, 6 (1984)
[CrossRef]

Svelto, O.

Szipocs, R.

Takase, T.

T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
[CrossRef]

Tempea, G.

Tondello, G.

Villoresi, P.

Vozzi, C.

Wang, H.

Wang, J. Y.

Warren, M. E.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

Weichel, H.

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (1)

R. N. Smartt and W. H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975).
[CrossRef]

Opt. Commun. (2)

T. Omatsu, K. Kuroda, and T. Takase, Opt. Commun. 87, 278 (1992).
[CrossRef]

N. Streibel, Opt. Commun. 49, 6 (1984)
[CrossRef]

Opt. Lett. (7)

Proc. SPIE (2)

L. W. Austin, A. Giessen, D. H. Leslie, and H. Weichel, Proc. SPIE 2375, 261 (1995).
[CrossRef]

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, Proc. SPIE 2870, 72 (1996).
[CrossRef]

Other (1)

International Organization for Standardization, “Lasers and laser-related equipment—test methods for the shape of a laser beam wavefront,” ISO document ISO/TC 172/SC9 (ISO2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup with a Ti : sapphire chirped-pulse amplification (CPA) system and a hollow fiber compression stage: HF, hollow fiber with an inner diameter of 400 μ m filled with Ar (240 mbars); CM, chirped mirrors for pulse compression, a focusing mirror [radius of curvature (ROC) −100 cm]; Hartmann–Shack sensor with computer and positions of wave-front measurements [positions (pos.) 1, 2, and 3].

Fig. 2
Fig. 2

(b) Measured wave front and (d) wave-front aberration W ( x , y ) plotted in units of wavelength ( λ = 750 nm ) for a polychromatic laser pulse 140 cm behind the hollow fiber exit (position 1), evaluated for a mean wavelength of 750 nm on a circular area of 3.1 mm radius. Reconstruction by spectral contributions yields (a) the wave front and (c) its aberration, showing good agreement with corresponding measured quantities (see Table 1).

Fig. 3
Fig. 3

(a) Spectrum-averaged wave front and (c) its aberrations obtained by propagation from position 2 to position 3 and corresponding (b) measured wave front and (d) aberrations at position 3.

Fig. 4
Fig. 4

Normalized laser spectrum after spectral broadening in an Ar-flooded hollow fiber. The gray bars represent locations of spectral filters used in the experiment. The values show the normalization factors used for constructing the wave front from individually spectral wave-front contributions.

Tables (1)

Tables Icon

Table 1 Comparison of Zernike Coefficients for the Polychromatic Wave Fronts Shown in Fig. 3, Recorded by a Single Hartmann–Shack Measurement (Measured) and Reconstructed by Its Spectral Wave-front Components (Calculated), Evaluated on a Circular Area of 3.1 mm Radius

Metrics