Abstract

We present a novel fast fabrication method for making optical waveguides by using a photoaligning and a liquid-crystal polymer. A difference in the refractive indices in the core and cladding regions is achieved by use of polarized UV light to align the polymer chains differently. A refractive-index difference of Δn=0.07 was achieved. The propagation loss in a channel waveguide is 4dBcm at a wavelength of 1.55μm. The fabrication method has only a few processing steps and yields short fabrication times. The waveguide structures offer possibilities for generating devices with new applications related to the polarization of the guided light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Eldada and L. W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000).
    [CrossRef]
  2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
    [CrossRef]
  3. L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
    [CrossRef]
  4. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
    [CrossRef]
  5. M. Schadt, Annu. Rev. Mater. Sci. 27, 305 (1997).
    [CrossRef]
  6. The polymers were developed and are distributed by Rolic Technologies, Ltd. (Allschwil, Switzerland).
  7. J. A. Dobrowolski, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Sec. 42.3.
  8. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
    [CrossRef]
  9. V. Van, P. P. Absil, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 19, 1734 (2001).
    [CrossRef]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
[CrossRef]

2001 (1)

2000 (1)

L. Eldada and L. W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000).
[CrossRef]

1997 (1)

M. Schadt, Annu. Rev. Mater. Sci. 27, 305 (1997).
[CrossRef]

1996 (1)

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Absil, P. P.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
[CrossRef]

Dobrowolski, J. A.

J. A. Dobrowolski, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Sec. 42.3.

Eldada, L.

L. Eldada and L. W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000).
[CrossRef]

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Ho, P.-T.

Hryniewicz, J. V.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
[CrossRef]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
[CrossRef]

Schadt, M.

M. Schadt, Annu. Rev. Mater. Sci. 27, 305 (1997).
[CrossRef]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Shacklette, L.

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000).
[CrossRef]

Stengel, K.

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Van, V.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, Adv. Mater. (Weinheim, Ger.) 14, 1339 (2002).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

M. Schadt, Annu. Rev. Mater. Sci. 27, 305 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000).
[CrossRef]

J. Lightwave Technol. (2)

V. Van, P. P. Absil, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 19, 1734 (2001).
[CrossRef]

L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, J. Lightwave Technol. 14, 1704 (1996)
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., Part 1 31, 2155 (1992).
[CrossRef]

Other (3)

The polymers were developed and are distributed by Rolic Technologies, Ltd. (Allschwil, Switzerland).

J. A. Dobrowolski, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Sec. 42.3.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Orientation of the polymer chains in the alignment layer after two subsequent UV exposures with orthogonal polarization (top view).

Fig. 2
Fig. 2

Waveguide structures with widths of 25 μ m (lower left) to 2 μ m (upper right). The picture was taken with a polarization microscope (dark regions correspond to the cladding; light regions, to the cores).

Fig. 3
Fig. 3

Transmission spectra of a waveguide polymer between two gold layers for p and s polarization (s polarization, dashed curve).

Fig. 4
Fig. 4

Refractive indices deduced from the transmission spectra with a fit of the Sellmeier function (s polarization, dashed curve).

Fig. 5
Fig. 5

IR picture of waveguide guiding light at 1550 nm. Light is propagating from the left to the right.

Fig. 6
Fig. 6

Decrease of the radiated intensity as a function of propagation distance. The data were fitted with an exponential curve (solid curve).

Tables (2)

Tables Icon

Table 1 Sellmeier Coefficients Obtained from the Curve in Fig. 4

Tables Icon

Table 2 Refractive Indices at Frequently Used Wavelengths a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n i ( λ ) = ( A i + B i λ 2 λ 2 C i ) 1 2 .

Metrics