Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical selectivity in optically dense media driven by optimized Gaussian-type ultrashort pulse pairs

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically demonstrate that selective resonant excitation can be achieved in a dense collection of V-type three-level atoms by optimizing the pulse delay and peak intensity ratio of an applied phase-tailored ultrashort pulse pair. Near-dipole–dipole interaction plays an important role in the quantum control of selective excitations since it brings about an intrinsic frequency shift in the atomic resonance, which builds up various excitation pathways. As a consequence, we can control the quantum interference between various pathways by shaping the excitation pulse pair to steer the atomic excitation selectively toward a desired quantum state.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum interference in atomic vapor observed by four-wave mixing with incoherent light

J. Ferraz, D. Felinto, L. H. Acioli, and S. S. Vianna
Opt. Lett. 30(14) 1876-1878 (2005)

Near dipole-dipole effects on the propagation of few-cycle pulse in a dense two-level medium

Keyu Xia, Shangqing Gong, Chengpu Liu, Xiaohong Song, and Yueping Niu
Opt. Express 13(16) 5913-5924 (2005)

Storage and release of femtosecond laser pulses in a resonant photonic crystal

Jianying Zhou, Huiguo Shao, Ji Zhao, Xiangyang Yu, and K. S. Wong
Opt. Lett. 30(12) 1560-1562 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.