Abstract

Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved phase information via coherence gating. We present a phase-sensitive technique called spectral-domain phase microscopy (SDPM). SDPM is a functional extension of spectral-domain optical coherence tomography that allows for the detection of nanometer-scale motions in living cells. The sensitivity of the technique is demonstrated, and its calibration is verified. A shot-noise limit to the displacement sensitivity of this technique is derived. Measurement of cellular dynamics was performed on spontaneously beating cardiomyocytes isolated from chick embryos.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
    [CrossRef] [PubMed]
  2. J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
    [CrossRef] [PubMed]
  3. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 26, 1271 (2001).
    [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
    [CrossRef]
  5. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Opt. Express 11, 2183 (2003), http://www. opticsexpress.org.
    [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A (Elsevier, New York, 1983).
  8. T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
    [CrossRef] [PubMed]

2004 (1)

T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

1996 (1)

J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
[CrossRef] [PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Badizadegan, K.

Block, S. M.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Burch, J.

T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
[CrossRef] [PubMed]

Choma, M. A.

Creazzo, T. L.

T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
[CrossRef] [PubMed]

Dasari, R. R.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Farinas, J.

J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
[CrossRef] [PubMed]

Feld, M. S.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Godt, R. E.

T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
[CrossRef] [PubMed]

Hahn, M. S.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Izatt, J. A.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Leitgeb, R.

Mazurin, O. V.

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A (Elsevier, New York, 1983).

Sarunic, M. V.

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Shvaiko-Shvaikovskaya, T. P.

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A (Elsevier, New York, 1983).

Streltsina, M. V.

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A (Elsevier, New York, 1983).

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Verkman, A. S.

J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
[CrossRef] [PubMed]

Wax, A.

Yang, C.

Biophys. J. (2)

J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
[CrossRef] [PubMed]

T. L. Creazzo, J. Burch, and R. E. Godt, Biophys. J. 86, 966 (2004).
[CrossRef] [PubMed]

Nature (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A (Elsevier, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) FD SDPM interferometer. The source is a 5 mW with a center wavelength and a 3-dB bandwidth of 830 and 45 nm, respectively. The spectrometer (Spec) has a 25-ms readout rate and a 5-ms integration time. (b) SS SDPM interferometer. The narrow-linewidth source is swept through a 130-nm bandwidth over 5 ms with a center wavelength of 1310 nm and an average power of 3 mW (Micron Optics[5]). The insets show the displacement signals recorded from a clean coverslip.

Fig. 2
Fig. 2

Power relationship between the spectrometer integration time and measured phase stability of the SDPM signal generated by reflections from a coverslip.

Fig. 3
Fig. 3

Change in the OPL of a 213 - μ m borosilicate coverslip as the water bath is cooled 1.2°C.

Fig. 4
Fig. 4

Top, photomicrograph of an isolated cardiomyocyte from a chick embryo. The tip of the arrow denotes the location of the SDPM beam. The box is 10 μ m × 10 μ m . Bottom, change in thickness of beating cardiomyocyte measured with SDPM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i ̃ ( k ) = ( ρ e ) S ( k ) δ k Δ t R R R S cos [ 2 n k ( Δ x + δ x ) ] .
I ̃ ( ± 2 n Δ x ) = ( ρ 2 e ) S Δ t R R R S E ( 2 n Δ x ) exp ( ± j 2 k 0 n δ x ) ,
δ x ( t ) = λ 0 4 n π ) [ I ̃ ( 2 n Δ x , t ) I ̃ ( 2 n Δ x , t 0 ) ] ,
A ( ± 2 n Δ x ) = ( ( ρ e ) S Δ t R R ) 1 2 exp ( j ϕ rand ) .
δ x sens = λ 0 4 n π arctan [ A ( ± 2 n Δ x ) I i ( ± 2 n Δ x ) ] λ 0 4 n π ( 2 e ρ S Δ t R S ) 1 2 ,
δ x sens λ 0 4 n π [ 1 SNR ( S , Δ t , R S ) ] 1 2 .

Metrics