Abstract

We present a new technique for measuring the temperature profiles of visible LED chips by use of a nematic liquid crystal with IR laser illumination. The LEDs studied have a multi-quantum-well InGaN/GaN/sapphire structure. New features in this technique are the use of a high-power IR laser beam as the sensing light and the insertion of a color filter in the optical path to block the high-intensity LED light. For the LEDs measured, the conversion efficiency decreases by 70% when the junction temperature rises from 25 to 107 °C. This technique is a valuable tool for studying the performance of LEDs as a function of junction temperature.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription