Abstract

We describe an instrument for the time-resolved spectroscopy of turbid media that is based on supercontinuum generation in a photonic crystal fiber. The light injected into the sample consists of subpicosecond pulses that cover 550–1000 nm at 85 MHz at an average power of as much as 40 mW. A spectrometer coupled to a multianode photomultiplier tube is used to detect the light simultaneously in 16 wavelength channels, with a resolution of 5–20 nm/channel, depending on the grating. Time-correlated single-photon counting is used to produce time-dispersion curves, which one fits to the diffusion equation to determine absorption and reduced scattering coefficients. We tested the instrument by measuring the time-resolved diffuse reflectance of epoxy phantoms and by performing in vivo measurements on volunteers. The results were similar to those obtained with previous discrete wavelength systems, whereas the full spectrum (610–810 nm) acquisition time was as short as 1 s owing to the parallel acquisition.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, Opt. Lett. 18, 1697 (1993).
    [CrossRef] [PubMed]
  2. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
    [CrossRef]
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
    [CrossRef] [PubMed]
  4. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
    [CrossRef]
  5. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, Appl. Spectrosc. 56, 725 (2002).
    [CrossRef]
  6. J. Swartling, J. S. Dam, and S. Andersson-Engels, Appl. Opt. 42, 4612 (2003).
    [CrossRef] [PubMed]
  7. F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
    [CrossRef]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  9. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, 2002).

2003

2002

2000

1999

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

1993

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Abrahamsson, C.

Andersson-Engels, S.

Berg, R.

Berger, A. J.

Bevilacqua, F.

Cerussi, A. E.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Dam, J. S.

Delpy, D. T.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Folestad, S.

Fry, M. E.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

Hebden, J. C.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

Hillman, E. M. C.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, 2002).

Jakubowski, D.

Johansson, J.

Josefson, M.

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Persson, A.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Ranka, J. K.

Schmidt, F. E.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

Sparen, A.

Stentz, A. J.

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Svanberg, S.

Swartling, J.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Tromberg, B. J.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Windeler, R. S.

Appl. Opt.

Appl. Phys. Lett.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

Appl. Spectrosc.

Opt. Lett.

Phys. Med. Biol.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, Phys. Med. Biol. 44, 967 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

F. E. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, Rev. Sci. Instrum. 71, 256 (2000).
[CrossRef]

Other

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the setup. A small fraction of the light from the Ti:sapphire laser was split off to a photodiode and used for synchronization. Bandpass interference filters could be inserted after the PCF to calibrate the spectrometer. A spectrometer (USB 2000, Ocean Optics, USA) was used to monitor the SC spectrum.

Fig. 2
Fig. 2

Spectrum of the SC, shown in arbitrary units on a logarithmic scale. The quantum efficiency of the PMT is also shown.

Fig. 3
Fig. 3

Linearity of increases in scattering and absorption: (a) μa and μs versus the concentration of black toner in the phantoms with the same concentration of TiO2: 1.4 mg/g. (b) μa and μs versus the concentration of TiO2 in the phantoms with the same concentration of toner: 12 µg/g. Linear regression lines are also shown. Error bars, standard deviations for repeated measurements performed on one phantom.

Fig. 4
Fig. 4

Spectra of μa and μs from in vivo measurements of the abdomens of two subjects; grating, 300 lines/mm. Curves, fitted spectral components (for μa) and scattering power law (for μs). Best fits for μa represent the total heme equivalent concentrations of 436 µmol/dm3 (for subject #1) and 304 µmol/dm3 (for subject #2) and oxygen saturations of 70% and 76%. The scatter powers were 1.50 and 1.17, respectively.

Metrics