Abstract

More than 200 m of germanosilica optical fiber is manufactured with an internal wire electrode running parallel to the core. In this new fabrication method the wire is integrated into the fiber during the draw process. This length of fiber is an order of magnitude longer than other previously reported fibers with internal electrodes. The optical loss is less than our measurement floor of 0.5 dB/m at 1550 nm. A 0.9-m section of the fiber is thermally poled, inducing a permanent second-order nonlinearity of 0.0125 pm/V. Methods to increase the induced nonlinearity are discussed. Integrating the wire into the fiber during the draw allows lengths of fiber with internal electrodes greater than 1 km to be manufactured and subsequently poled.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li and D. N. Payne, in Integrated Guided Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 130–133.
  2. M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
    [CrossRef]
  3. N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.
  4. W. Xu, “Thermally poled fibre devices,” Ph.D. dissertation (University of Sydney, Sydney, Australia, 1999).
  5. P. Blazkiewicz, W. Xu, and S. Fleming, J. Lightwave Technol. 20, 965 (2002).
    [CrossRef]
  6. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
    [CrossRef]
  7. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, Opt. Lett. 23, 1826 (1998).
    [CrossRef]
  8. P. L. Kirby, Br. J. Appl. Phys. 1, 193 (1950).
    [CrossRef]

2002

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

P. Blazkiewicz, W. Xu, and S. Fleming, J. Lightwave Technol. 20, 965 (2002).
[CrossRef]

1999

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

1998

1950

P. L. Kirby, Br. J. Appl. Phys. 1, 193 (1950).
[CrossRef]

Berlemont, D.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

Blazkiewicz, P.

Canfield, B. K.

Claesson, A.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

Fleming, S.

P. Blazkiewicz, W. Xu, and S. Fleming, J. Lightwave Technol. 20, 965 (2002).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

Folkine, M.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

Garvey, D. W.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

Kirby, P. L.

P. L. Kirby, Br. J. Appl. Phys. 1, 193 (1950).
[CrossRef]

Kjellberg, L.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

Krummenacher, L.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

Kuzyk, M. G.

Li, L.

L. Li and D. N. Payne, in Integrated Guided Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 130–133.

Lo, K. M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

Margulis, W.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

Myren, N.

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

Nilsson, L. E.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

Payne, D. N.

L. Li and D. N. Payne, in Integrated Guided Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 130–133.

Tarasenko, O.

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

Tostenrude, J.

Welker, D. J.

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

Xu, W.

P. Blazkiewicz, W. Xu, and S. Fleming, J. Lightwave Technol. 20, 965 (2002).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

W. Xu, “Thermally poled fibre devices,” Ph.D. dissertation (University of Sydney, Sydney, Australia, 1999).

1989 OSA Technical Digest Series

L. Li and D. N. Payne, in Integrated Guided Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 130–133.

Br. J. Appl. Phys.

P. L. Kirby, Br. J. Appl. Phys. 1, 193 (1950).
[CrossRef]

J. Lightwave Technol.

Opt Lett.

M. Folkine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt Lett. 27, 1643 (2002).
[CrossRef]

Opt. Fiber Technol. Mater Devices Syst.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, Opt. Fiber Technol. Mater Devices Syst. 5, 235 (1999).
[CrossRef]

Opt. Lett.

Other

N. Myren, M. Folkine, O. Tarasenko, L. E. Nilsson, and W. Margulis, in Bragg Gratings, in Glass Waveguides, Photosensitivity, and Poling, Postconference Digest, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC1.

W. Xu, “Thermally poled fibre devices,” Ph.D. dissertation (University of Sydney, Sydney, Australia, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left, fiber draw with the incorporated wire; right, cross section of resulting fiber.

Fig. 2
Fig. 2

Fiber-based Mach–Zehnder interferometer.

Fig. 3
Fig. 3

Second-order nonlinearity measurements taken before and after poling.

Fig. 4
Fig. 4

Positive poling evolution for single-electrode fiber.

Metrics