Abstract

A numerical and experimental analysis of the stimulated Brillouin scattering in a single-mode optical fiber for distributed sensing applications is carried out in the frequency domain. The theoretical model describing the Brillouin interaction is solved by taking into account the temporal dynamics of the acoustic wave that is involved. The simulations and the experimental results reveal the role played by the ac component of the acoustic wave, which is responsible for significant changes of the small-signal stimulated Brillouin scattering transfer function that occur when the modulation frequency rises above the natural Brillouin gain spectrum linewidth. One should take these effects into account to perform accurate signal processing of frequency-domain signals in high-resolution distributed sensing applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Opt. Lett. 21, 1402 (1996).
    [CrossRef] [PubMed]
  2. R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, Opt. Lett. 27, 288 (2002).
    [CrossRef]
  3. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Lett. 25, 156 (2000).
    [CrossRef]
  4. X. Bao, A. Brown, M. DeMerchant, and J. Smith, Opt. Lett. 24, 510 (1999).
    [CrossRef]
  5. H. Naruse and M. Tateda, Appl. Opt. 39, 6376 (2000).
    [CrossRef]
  6. E. Lichtman, R. G. Waarts, and A. A. Friesem, J. Lightwave Technol. 7, 171 (1989).
    [CrossRef]
  7. V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
    [CrossRef] [PubMed]

2002 (1)

2000 (2)

1999 (1)

1996 (2)

D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Opt. Lett. 21, 1402 (1996).
[CrossRef] [PubMed]

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

1989 (1)

E. Lichtman, R. G. Waarts, and A. A. Friesem, J. Lightwave Technol. 7, 171 (1989).
[CrossRef]

Bao, X.

Bernini, R.

Brown, A.

Crocco, L.

DeMerchant, M.

Friesem, A. A.

E. Lichtman, R. G. Waarts, and A. A. Friesem, J. Lightwave Technol. 7, 171 (1989).
[CrossRef]

Garus, D.

Gogolla, T.

Jackson, D. A.

Krebber, K.

Lecoeuche, V.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Lett. 25, 156 (2000).
[CrossRef]

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Lichtman, E.

E. Lichtman, R. G. Waarts, and A. A. Friesem, J. Lightwave Technol. 7, 171 (1989).
[CrossRef]

Minardo, A.

Naruse, H.

Pannell, C. N.

Randoux, S.

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Schliep, F.

Ségard, B.

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Smith, J.

Soldovieri, F.

Tateda, M.

Waarts, R. G.

E. Lichtman, R. G. Waarts, and A. A. Friesem, J. Lightwave Technol. 7, 171 (1989).
[CrossRef]

Webb, D. J.

Zemmouri, J.

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Zeni, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated (solid curves) and measured (circles and squares) SBS normalized transfer function magnitude. The modulation frequencies are fm=40 kHz and fm=21.3 MHz.

Fig. 2
Fig. 2

Calculated (solid curves) and measured (circles) SBS normalized transfer function. The modulation frequency is 56.1 MHz.

Fig. 3
Fig. 3

Calculated (solid curves) and measured (circles) SBS normalized transfer function. The modulation frequency is 75.5 MHz.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ep/t+Ep/z=-EsEa-Ep,
Es/t-Es/z=EpEa*-Es,
Ea/t+1+iΔzEa=EpEs*,
Ejz,t=ReEj0z+Ej1zexpjω¯t+Ej2*zexp-jω¯t,  j=p,s,a,
Ea1=Ep0Es2+Ep1Es0*1+jΔ+ω¯,
Ea2=Ep0*Es1+Ep2Es01-jΔ-ω¯.
Ep1z=-jω¯EP1-Ep0Es0*1+jΔEs1-Es021+jΔ+ω¯Ep1-Es0Ep01+jΔ+ω¯Es2-α2Ep1,
Ep2z=-jω¯EP2-Ep0*Es01-jΔEs2-Es021-jΔ-ω¯Ep2-Es0*Ep0*1-jΔ-ω¯Es1-α2Ep2,
Es1z=jω¯Es1-Ep0*Es01-jΔEp1-Ep021-jΔ-ω¯Es1-Es0Ep01-jΔ-ω¯Ep2+α2Es1,
Es2z=jω¯Es2-Ep0Es0*1+jΔEp2-Ep021+jΔ+ω¯Es2-Es0*Ep0*1+jΔ+ω¯Ep1+α2Es2.

Metrics