Abstract

A novel type of Fourier-transform infrared spectrometer (FTIR) is demonstrated. It is based on two Ti:sapphire lasers emitting femtosecond pulse trains with slightly different repetition frequencies. Two mid-infrared beams—derived from those lasers by rectification in GaSe—are superimposed upon a detector to produce purely time-domain interferograms that encode the infrared spectrum. The advantages of this spectrometer compared with the common FTIR include ease of operation (no moving parts), speed of acquisition (100 µs demonstrated), and not-yet-shown collimated long-distance propagation, diffraction-limited microscopic probing, and electronically controllable chemometric factoring. Extending time-domain frequency-comb spectroscopy to lower (terahertz) or higher (visible, ultraviolet) frequencies should be feasible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston and K. P. Cheung, J. Opt. Soc. Am. B 2, 606 (1985).
    [CrossRef]
  2. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
    [CrossRef]
  3. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, Opt. Lett. 23, 861 (1998).
    [CrossRef]
  4. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
    [CrossRef]
  5. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
    [CrossRef] [PubMed]
  6. D. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” U.S. patent5,748,309 (May5, 1998).
  7. D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
    [CrossRef]
  8. J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
    [CrossRef]
  9. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  10. R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
    [CrossRef] [PubMed]

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

2000 (2)

D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

1998 (1)

1995 (1)

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

1985 (1)

1978 (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
[CrossRef]

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

Auston, D. H.

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

Bonvalet, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Cheung, K. P.

Eckstein, J. N.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
[CrossRef]

Elsaesser, T.

Ferguson, A. I.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
[CrossRef]

Hasselbeck, M. P.

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Huber, R.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Joffre, M.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Joschko, M.

Kaindl, R. A.

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
[CrossRef] [PubMed]

D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[CrossRef]

D. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” U.S. patent5,748,309 (May5, 1998).

Leitenstorfer, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Martin, J. L.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Migus, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Murakowski, J.

D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[CrossRef]

Smith, D. C.

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
[CrossRef] [PubMed]

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

van der Weide, D.

D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[CrossRef]

D. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” U.S. patent5,748,309 (May5, 1998).

Woerner, M.

Appl. Phys. Lett. (2)

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

D. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (3)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, Nature 418, 159 (2002).
[CrossRef] [PubMed]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature 414, 286 (2001).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).
[CrossRef]

Other (1)

D. van der Weide and F. Keilmann, “Coherent periodically pulsed radiation spectrometer,” U.S. patent5,748,309 (May5, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical system of a coherent FTIR. Two femtosecond lasers with slightly different pulse repetition frequencies generate, by rectification in GaSe, two infrared beams that are superimposed onto a ZnSe combiner. No mechanically moving part is involved.

Fig. 2
Fig. 2

(a) Infrared interferogram recorded by the HgCdTe detector. (b) Infrared spectrum calculated by Fourier transformation. (c) Infrared spectrum from a subsequent recording; the slightly changed frequency scaling is due to laser drift.

Fig. 3
Fig. 3

Four consecutive spectra superimposed and normalized as described in the text: (a) without and (b) with infrared-absorbing vapor in the beam path before the detector.

Metrics