Abstract

We present a novel model for calculating the bit error rate in optical communication systems in the case of on–off keying intensity modulation and optically preamplified direct detection. The model accounts for the intersymbol interference and is based on the Laguerre photon-count probability distribution predicted by photodetection theory. For a non-return-to-zero modulation format an accurate value of the sensitivity for a quantum-limited receiver of 33.9 photons/bit is obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  2. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
    [CrossRef]
  3. T. Li and M. C. Teich, Electron. Lett. 27, 598 (1991).
    [CrossRef]
  4. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  5. P. J. Winzer, M. Pfennigbauer, M. M. Strasser, and W. R. Leeb, J. Lightwave Technol. 19, 1263 (2001).
    [CrossRef]
  6. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  7. S. M. Pietralunga, P. Martelli, and M. Martinelli, Opt. Lett. 28, 152 (2003).
    [CrossRef] [PubMed]

2003 (1)

2001 (1)

1991 (1)

T. Li and M. C. Teich, Electron. Lett. 27, 598 (1991).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Haus, A.

A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, Berlin, 2000).
[CrossRef]

Leeb, W. R.

Li, T.

T. Li and M. C. Teich, Electron. Lett. 27, 598 (1991).
[CrossRef]

Martelli, P.

Martinelli, M.

Pfennigbauer, M.

Pietralunga, S. M.

Saleh, B. E. A.

B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
[CrossRef]

Strasser, M. M.

Teich, M. C.

T. Li and M. C. Teich, Electron. Lett. 27, 598 (1991).
[CrossRef]

Winzer, P. J.

Electron. Lett. (1)

T. Li and M. C. Teich, Electron. Lett. 27, 598 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Other (4)

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, Berlin, 2000).
[CrossRef]

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup of the optically preamplified direct-detection receiver. The optical signal traverses the cascade of an optical amplifier (OA), a polarizer (P), and a filter (F) with noise equivalent optical bandwidth Beq, then it is converted into an electrical signal by a photodetector (PD) temporally integrated over Tm.

Fig. 2
Fig. 2

Contour lines of the quantum-limited sensitivity in an optically preamplified IM-DD system. The mean number of input photons/bit necessary to obtain a BER equal to 10-9 was calculated as a function of the normalized noise equivalent optical bandwidth Beq/R and the normalized measurement time Tm/Tb. An optical filter with rectangular baseband impulse response and an optical amplifier with G=30 dB and nsp=1 were considered.

Fig. 3
Fig. 3

Quantum-limited BER for an optically preamplified IM-DD system, calculated as a function of normalized noise equivalent optical bandwidth Beq/R, with Tm/Tb=0.86 and 34 photons/bit at the optical amplifier input (solid curve, Laguerre distribution and exact M; dashed curve, Gaussian distribution and exact M; dotted curve, Laguerre distribution and approximated M). An optical filter with rectangular baseband impulse response and an optical amplifier with G=30 dB and nsp=1 were considered in the calculation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

pn=nASE/Mn1+nASE/Mn+M exp-ns1+nASE/M×LnM-1-ns1+nASE/MnASE/M,
n¯=ns+nASE,
Δn2=ns+nASE+nASE2M+2MnsnASE.
ns=1hνt0t0+TmPstdt=Ghνt0t0+TmPint1/2*ft2dt,
nASE=nspG-1BeqTm,
M=1Tm-TmTm1-τTmg1τ2dτ-1,
BER=12n=0nthπ1n+n=nthπ0n,
π0=14i,k=01pi0k,
π1=14i,k=01pi1k.

Metrics