Abstract

We demonstrate a novel method of generating a multiwavelength pulse train by use of time-lens compression. In addition to pulse compression, this time lens simultaneously displaces the pulses according to their center wavelengths, resulting in a temporally evenly spaced multiwavelength pulse train. We further demonstrate a new aberration-correction technique based on the temporal analog of a spatial correction lens to improve the quality of the compressed pulses. Through the use of cw distributed-feedback lasers and electro-optic phase modulators, the all-fiber system allows complete tunability of temporal spacing, spectral profile, and repetition rate.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
    [CrossRef]
  2. A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
    [CrossRef]
  3. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
    [CrossRef]
  4. P. Rabiei and A. F. J. Levi, J. Lightwave Technol. 18, 1264 (2000).
    [CrossRef]
  5. C. Xu and X. Liu, Opt. Lett. 28, 986 (2003).
    [CrossRef] [PubMed]
  6. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  7. A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
    [CrossRef]
  8. C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
    [CrossRef]
  9. L. F. Mollenauer and C. Xu, in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB1.
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

2003

2002

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

2001

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

2000

1999

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

1994

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Auld, B. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Bennett, C. V.

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Bhushan, A. S.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Bloom, D. M.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Boyraz, O.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Esman, R. D.

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

Godil, A. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Islam, M.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Jalali, B.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Kang, J. U.

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

Kelkar, P. V.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Levi, A. F. J.

Liu, X.

Mollenauer, L. F.

L. F. Mollenauer and C. Xu, in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB1.

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Rabiei, P.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Xu, C.

C. Xu and X. Liu, Opt. Lett. 28, 986 (2003).
[CrossRef] [PubMed]

L. F. Mollenauer and C. Xu, in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB1.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

Electron. Lett.

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

IEEE J. Quantum Electron.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Technol. 49, 1840 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

L. F. Mollenauer and C. Xu, in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB1.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for generating a multiwavelength pulse train. Pulse trains were generated with and without a correction lens. The final compressed pulse train is also illustrated schematically. PC, pulse carver; MZ, Mach–Zehnder modulator; PMs, phase modulators.

Fig. 2
Fig. 2

Optical spectra before and after the time lens in the absence of the correction lens, resolution bandwidth of 0.01 nm. The dashed spikes represent the initial spectra of the cw DFB lasers: (a) calculated, (b) measured.

Fig. 3
Fig. 3

Oscilloscope time traces of (a) each wavelength channel measured separately then overlaid, and (b) all channels measured simultaneously. There is no averaging on (a) or (b). The impulse response of the oscilloscope is 18.0 ps.

Fig. 4
Fig. 4

Cross-correlation trace demonstrating even pulse spacing. Inset, theoretical trace.

Fig. 5
Fig. 5

Autocorrelation trace of a single-wavelength channel (a) without a correction lens, autocorrelation FWHM 3.5 ps, and (b) with a correction lens, autocorrelation FWHM 4.2 ps. Taking into account the deconvolution factors gives pulse widths of 2.6 and 3.0 ps, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E=E0 exp-t2/2T02,
Δφ=πV2Vπ cos2πtTm-Ct22T02,
E=E0 exp-1+iC2t2T02.
Z=Zcf=C1+C2LD,
T=T01+C2.
Δt=2πβ2ZcfΔν.
Δt=Tm1N+n=2πβ2ZcfΔν,

Metrics