Abstract

Photoinduced orientational distributions are implemented with one- and two-photon absorption interference in polymer films containing chromophores that exhibit luminescent and nonlinear properties. The odd- and even-order parameters of the final distribution are probed by simultaneous measurement of second-harmonic generation (SHG) and two-photon fluorescence (TPF). We show the possibility of engineering local SHG and TPF anisotropies by controlling the polarization states and intensities of the writing optical fields. Complex multipolar orders are modeled with an irreducible spherical tensor-based formalism jointly applied to the molecular polarizabilities and field tensors.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
    [CrossRef] [PubMed]
  2. S. Brasselet and J. Zyss, Opt. Lett. 22, 1464 (1997).
    [CrossRef]
  3. J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
    [CrossRef]
  4. R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, Opt. Lett. 25, 1255 (2000).
    [CrossRef]
  5. M. Dumont, Nonlinear Opt. 25, 195 (2000).
  6. X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
    [CrossRef]
  7. W. M. McClain, J. Chem. Phys. 58, 324 (1973).
  8. C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
    [CrossRef]

2001 (1)

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

2000 (3)

M. Dumont, Nonlinear Opt. 25, 195 (2000).

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, Opt. Lett. 25, 1255 (2000).
[CrossRef]

1997 (2)

1992 (1)

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

1973 (1)

W. M. McClain, J. Chem. Phys. 58, 324 (1973).

Brasselet, S.

Charra, F.

C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

Devaux, F.

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

Dumont, M.

M. Dumont, Nonlinear Opt. 25, 195 (2000).

Fiorini, C.

Hirao, K.

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

Josse, D.

Kitaoka, K.

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

Li, Z.

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

Liu, X.

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

McClain, W. M.

W. M. McClain, J. Chem. Phys. 58, 324 (1973).

Nunzi, J. M.

C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

Piron, R.

Qiu, J.

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

Raimond, P.

C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

Shen, Y.

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

Si, J.

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

Toussaere, E.

Xu, G.

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

Ye, P.

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

Zyss, J.

J. Appl. Phys. (2)

J. Si, J. Qiu, K. Kitaoka, and K. Hirao, J. Appl. Phys. 89, 2029 (2001).
[CrossRef]

X. Liu, G. Xu, J. Si, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 88, 3848 (2000).
[CrossRef]

J. Chem. Phys. (1)

W. M. McClain, J. Chem. Phys. 58, 324 (1973).

J. Opt. Soc. Am. B (1)

Nonlinear Opt. (1)

M. Dumont, Nonlinear Opt. 25, 195 (2000).

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Charra, F. Devaux, J. M. Nunzi, and P. Raimond, Phys. Rev. Lett. 68, 2440 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup: PMT, photomultiplier; L, lens; λ/2, half-wave plate at ω. (b) Dynamics of SHG and TPF signals measured without analyzers every 60 s during the orientation of DCM molecules for parallel linear poling fields. (c) Emission spectrum after all-optical poling (integration time of 5 s).

Fig. 2
Fig. 2

(a) Experimental SHG polarization response (open circles) and fits (curves) for (i) parallel and (ii) perpendicular poling fields. The SHG signals are corrected for residual fluorescence at 532 nm. (b) Experimental TPF polarization response (open circles) and fits (curves) for (i) an unpoled sample, (ii) a poled sample with I2ω=0 mJ/cm2 and Iω=0.6 J/cm2, and (iii) a poled sample with I2ω=2.4 mJ/cm2 and Iω=0.6 J/cm2. (c) Centrosymmetric contribution to the molecular distribution deduced from (i) the experimental data and (ii) from the entire distribution.

Fig. 3
Fig. 3

Experimental SHG efficiency and TPF anisotropy as functions of the I2ω/Iω2 ratio collected for three different fundamental field intensities. The TPF anisotropy is the ratio between the maximum and minimum TPF intensities measured after poling. Theoretical SHG efficiencies without (solid curve) and with (dashed curve) photobleaching.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fΩ=1-PgeΩ1-PgeΩdΩ-DPgeΩ,
fmmJ=1Λδm=0δm=0δJ=0-1Λ+D×p1amJe1mJ+p3cmJe3mJ for J=0,2,4,fmmJ=-1Λ+Dp2bmJe2mJ for J=1,3,
IeSHGφ=βSHGΩΩFeSHGφ2=m,m,J=1,3N2J+1βSHGmJ*fmmJFeSHGmJφ2,
IeTPFφ=αemΩγabsΩΩFeTPFφ=m,m,J=0,2,4N2J+1αemγabsmJ*fmmJ×FeTPFmJφ,

Metrics