Abstract

A novel phase-control method with application to phase-shifting interferometry is presented. The linear polarization state of an external (green) light beam is recorded on a bacteriorhodopsin film, and this polarization state is read by a circular polarized (red) laser beam. By reading the bacteriorhodopsin film, the original (red) wave reverses its circularity and becomes phase shifted by an amount that is dependent on the polarization of the external (green) beam. This method of phase control can be applied in a two-beam interferometer in which the test and reference waves are orthogonally polarized, which allows one to obtain phase modulation without moving parts inside the interferometer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bruning, J. Gallagher, D. Rosenfeld, D. White, D. Brangaccio, and D. Herriot, Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  2. H. Schreiber and J. Schwider, Appl. Opt. 36, 5321 (1997).
    [CrossRef] [PubMed]
  3. E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
    [CrossRef]
  4. J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
    [CrossRef]
  5. J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
    [CrossRef]
  6. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, Appl. Opt. 22, 3421 (1983).
    [CrossRef]
  7. N. Hampp, Chem. Rev. 100, 1755 (2000).
    [CrossRef]
  8. Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
    [CrossRef]
  9. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964).
    [CrossRef]
  10. D. W. Griffin, Opt. Lett. 26, 140 (2001).
    [CrossRef]

2002 (2)

J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
[CrossRef]

Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

2001 (1)

2000 (1)

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

1999 (1)

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

1998 (1)

E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
[CrossRef]

1997 (1)

1983 (1)

1974 (1)

1964 (1)

Brangaccio, D.

Bruning, J.

Burow, R.

Dubra, A.

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

Dultz, W.

E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
[CrossRef]

Elssner, K.-E.

Ferrari, J. A.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
[CrossRef]

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
[CrossRef]

Frins, E. M.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
[CrossRef]

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
[CrossRef]

Gallagher, J.

Griffin, D. W.

Grzanna, J.

Hampp, N.

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

Herriot, D.

Jonathan, J.-M.

Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Merkel, K.

Murty, M. V. R. K.

Okada-Shudo, Y.

Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Perciante, C. D.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
[CrossRef]

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

Roosen, G.

Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Rosenfeld, D.

Schreiber, H.

Schwider, J.

Spolaczyk, R.

White, D.

Appl. Opt. (4)

Chem. Rev. (1)

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

Opt. Commun. (1)

J. A. Ferrari, E. M. Frins, and C. D. Perciante, Opt. Commun. 202, 233 (2002).
[CrossRef]

Opt. Eng. (1)

Y. Okada-Shudo, J.-M. Jonathan, and G. Roosen, Opt. Eng. 41, 2803 (2002).
[CrossRef]

Opt. Lett. (2)

J. A. Ferrari, E. M. Frins, C. D. Perciante, and A. Dubra, Opt. Lett. 7, 1272 (1999).
[CrossRef]

D. W. Griffin, Opt. Lett. 26, 140 (2001).
[CrossRef]

Pure Appl. Opt. (1)

E. M. Frins, W. Dultz, and J. A. Ferrari, Pure Appl. Opt. 7, 53 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: SF1, SF2, spatial filters; L1L4, collimation lenses; L5, imaging lens; QW1, QW2, quarter-wave plates (for 633 nm); M1, M2, mirrors; PBS, polarizing beam splitter; BS, polarization-maintaining beam splitter; P, linear polarizer; QW3, a quarter-wave plate (for 532 nm); PM, polarization mask; C, digital camera; PO, test phase object.

Fig. 2
Fig. 2

Interferograms obtained for (a) α=0, (b) α=π/4, (c) α=π/2. The fringes in (b) and (c) are shifted by the amounts π/2 rad and π rad, respectively, with respect to (a).

Fig. 3
Fig. 3

Interferogram with an inhomogeneous phase shift generated by substituting polarization mask PM with a Wollaston prism; both orthogonal linearly polarized beams emerging from the Wollaston are projected simultaneously on the BR. The figure shows two half-circles with fringes shifted by an amount π rad to each other.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

EH=E010,
M1=121ii1,
M2=121-i-i1.
EQW=E0/21i,
P=0001;
M0=cos2αx,ysinαx,ycosαx,ysinαx,ycosαx,ysin2αx,y,
EBR=E0/221i+E0/22expi2αx,y1-i.
EP=E1 expi2αx,y01,
Ix,y=I0x,y1+Vx,ycosϕx,y+2αx,y,

Metrics