Abstract

A new optical filter architecture and a new design methodology are presented for approximating any frequency-dependent 2×2 unitary matrix that consists of two coupled phase and amplitude responses. Design examples are provided for the compensation of polarization mode dispersion (PMD) by approximating the inverse of a synthesized fiber’s Jones matrix. Compensation of the channel PMD over the signal bandwidth is demonstrated, as required for demultiplexing channels in a polarization-multiplexed system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.
  2. C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
    [CrossRef]
  3. T. Ozeki and T. Kudo, in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper W19.
  4. L. Moller and L. Buhl, J. Lightwave Technol. 19, 1125 (2001).
    [CrossRef]
  5. C. Madsen, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MO6.
  6. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, J. Lightwave Technol. 18, 1418 (2000).
    [CrossRef]
  7. L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
    [CrossRef]

2001

L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
[CrossRef]

L. Moller and L. Buhl, J. Lightwave Technol. 19, 1125 (2001).
[CrossRef]

2000

Ahuja, A.

Bogart, K.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Buhl, L.

Cappuzzo, M.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Chandrasekhar, S.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Eggleton, B. J.

Gomez, L.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Kogelnik, H.

L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
[CrossRef]

Kudo, T.

T. Ozeki and T. Kudo, in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper W19.

Kuo, P.

Laskowski, E.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Madsen, C.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

C. Madsen, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MO6.

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

Mikkelsen, B.

Moller, L.

Nelson, L. E.

L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
[CrossRef]

Nielsen, T. N.

Nielson, T. N.

L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
[CrossRef]

Ozeki, T.

T. Ozeki and T. Kudo, in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper W19.

Paunescu, A.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Rogers, J. A.

Stulz, L.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Westbrook, P. S.

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

1993 OSA Technical Digest Series

T. Ozeki and T. Kudo, in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper W19.

IEEE Photon. Technol. Lett.

L. E. Nelson, T. N. Nielson, and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 738 (2001).
[CrossRef]

J. Lightwave Technol.

OSA Trends in Optics and Photonics Series

C. Madsen, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MO6.

C. Madsen, S. Chandrasekhar, E. Laskowski, K. Bogart, M. Cappuzzo, A. Paunescu, L. Stulz, and L. Gomez, in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD9.

Other

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Per-channel PMD compensation at the receiver with channel estimation: MUX, multiplexer; DMUX, demultiplexer.

Fig. 2
Fig. 2

Integrated PMD compensator architecture: left, single-waveguide output transmitting both polarizations for in-line compensation and right, polarization-demultiplexed output.

Fig. 3
Fig. 3

(a) Multistage APF building block shown for a ring-resonator implementation, (b) 2×2 compensating filter with multistage APF building blocks and directional couplers.

Fig. 4
Fig. 4

(a) System schematic for single-polarization input. System penalty distributions for CSRZ signals at bit rates and DGD values as shown: Tx, transmitter; Rx, receiver; Trap Filt, trap filter; POL, polarizer; Atten, attenuator.

Fig. 5
Fig. 5

(a) System schematic for the polarization-multiplexing simulation, (b) frequency response of one-point and three-point (-10, 0, 10 GHz) correction, (c) system penalty for 2×20 Gbits/s CSRZ: Tx1, Tx2, orthogonally polarized transmitters; Rx1, Rx2, receivers; Pol Demux, polarization demultiplexer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Mω=Xω-Y*ωYωX*ω.

Metrics