Abstract

In apertureless scanning near-field optical microscopy (ASNOM), the probe vibration is often used to increase the detected signal. The useful signal is detected at the probe-vibration frequency by a lock-in amplifier. By comparing two-dimensional numerical results with an experimental scan, we show numerically that, to explain or predict the detected signal, a realistic model of ASNOM should take into account the scan of the probe as well as the probe vibration and the material properties.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Girard and D. Courjon, Surf. Sci. 382, 9 (1997).
    [CrossRef]
  2. R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2002).
    [CrossRef]
  3. G. Wurtz, R. Bachelot, and P. Royer, Rev. Sci. Instrum. 69, 1735 (1998).
    [CrossRef]
  4. A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 109 (1998).
    [CrossRef]
  5. P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
    [CrossRef]
  6. J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
    [CrossRef]
  7. S. Kawata and Y. Inouye, Ultramicroscopy 57, 313 (1995).
    [CrossRef]
  8. R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
    [CrossRef]
  9. S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
    [CrossRef]
  10. R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
    [CrossRef]
  11. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
    [CrossRef]
  12. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

2003 (1)

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

2002 (1)

R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2002).
[CrossRef]

2001 (3)

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
[CrossRef]

2000 (1)

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

1999 (1)

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

1998 (2)

1997 (1)

C. Girard and D. Courjon, Surf. Sci. 382, 9 (1997).
[CrossRef]

1995 (1)

S. Kawata and Y. Inouye, Ultramicroscopy 57, 313 (1995).
[CrossRef]

1993 (1)

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

Adam, P.

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

Adam, P. M.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Bachelot, R.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, Rev. Sci. Instrum. 69, 1735 (1998).
[CrossRef]

Barchiesi, D.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Benrezzak, S.

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

Bijeon, J. L.

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

Bijeon, J.-L.

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

Carminati, R.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 109 (1998).
[CrossRef]

Courjon, D.

C. Girard and D. Courjon, Surf. Sci. 382, 9 (1997).
[CrossRef]

Fikri, R.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Girard, C.

C. Girard and D. Courjon, Surf. Sci. 382, 9 (1997).
[CrossRef]

Greffet, J. J.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Greffet, J.-J.

Hamann, H. F.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
[CrossRef]

H'Dhili, F.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2002).
[CrossRef]

Hudlet, S.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Inouye, Y.

S. Kawata and Y. Inouye, Ultramicroscopy 57, 313 (1995).
[CrossRef]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

Kawata, S.

S. Kawata and Y. Inouye, Ultramicroscopy 57, 313 (1995).
[CrossRef]

Keilmann, F.

R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2002).
[CrossRef]

Laddada, R.

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

Madrazo, A.

Martin, Y. C.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
[CrossRef]

Nieto-Vesperinas, M.

Porto, J. A.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Royer, P.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, Rev. Sci. Instrum. 69, 1735 (1998).
[CrossRef]

Stashkevitch, A.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Vial, A.

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Viardot, G.

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

Viradot, G.

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

Walford, J. N.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

Wickramasinghe, H. K.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
[CrossRef]

Wurtz, G.

G. Wurtz, R. Bachelot, and P. Royer, Rev. Sci. Instrum. 69, 1735 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2002).
[CrossRef]

Eur. J. Appl. Phys. (1)

R. Laddada, S. Benrezzak, P. Adam, G. Viradot, J.-L. Bijeon, and P. Royer, Eur. J. Appl. Phys. 6, 171 (1999).
[CrossRef]

J. Appl. Phys. (2)

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevitch, and P. Royer, J. Appl. Phys. 89, 5159 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

P. Adam, J. L. Bijeon, G. Viardot, and P. Royer, Opt. Commun. 174, 91 (2000).
[CrossRef]

R. Fikri, D. Barchiesi, F. H'Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Wurtz, R. Bachelot, and P. Royer, Rev. Sci. Instrum. 69, 1735 (1998).
[CrossRef]

Surf. Sci. (2)

S. Benrezzak, P. Adam, J. L. Bijeon, and P. Royer, Surf. Sci. 491, 195 (2001).
[CrossRef]

C. Girard and D. Courjon, Surf. Sci. 382, 9 (1997).
[CrossRef]

Ultramicroscopy (1)

S. Kawata and Y. Inouye, Ultramicroscopy 57, 313 (1995).
[CrossRef]

Other (1)

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the numerical model.

Fig. 2
Fig. 2

Comparison of experimental apertureless scanning near-field optical microscopy AFM data (dashed curves) and FEM simulations of the far-field detected signal (I/I0, where I0 is the incoming intensity). The simulated signals are calculated (a) with and (b) without probe vibration modeling. To make the comparison easier, all curves are in arbitrary units. Curve (b), computed without probe vibration, does not reproduce the experimental curve.

Fig. 3
Fig. 3

Comparison of FEM computations for two wavelengths, λ=488 nm (solid curve) and λ=528 nm (dashed curve). The far-field detected signal with lock-in detection at the probe vibration frequency for gold particles (I/I0, where I0 is the incoming intensity). Only the computed signal at resonance λ=488 nm (solid curve) exhibits positive contrast for the small particle (A zone).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ωdiv1 grad Hz+ω2c2HzνdΩ=0,
yprobet=y0xscan+A01+cos2πft,

Metrics