Abstract

We recently analyzed a new class of laser amplifier based on transverse Bragg reflection. We show that the unique properties of Bragg confinement make it possible through modal loss discrimination to achieve single-transverse-mode operation with transverse modal size that is an order of magnitude larger than in lasers that depend on total internal reflection for transverse confinement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
    [CrossRef]
  2. A. Yariv, Opt. Lett. 27, 936 (2002).
    [CrossRef]
  3. A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
    [CrossRef] [PubMed]
  4. D. Botez, Appl. Phys. Lett. 74, 3102 (1999).
    [CrossRef]
  5. G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
    [CrossRef]
  6. L. A. Coldren and S. W. Corzine, in Diode Lasers and Photonic Integrated Circuits, K. Chang eds. (Wiley, New York, 1995), pp. 106–108.
  7. C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
    [CrossRef]
  8. J. R. Marciante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
    [CrossRef]

2003 (1)

2002 (2)

A. Yariv, Opt. Lett. 27, 936 (2002).
[CrossRef]

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

2000 (1)

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

1999 (1)

D. Botez, Appl. Phys. Lett. 74, 3102 (1999).
[CrossRef]

1996 (1)

J. R. Marciante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
[CrossRef]

1976 (1)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Agrawal, G. P.

J. R. Marciante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
[CrossRef]

Bartolo, R. E.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Bewley, W. W.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Botez, D.

D. Botez, Appl. Phys. Lett. 74, 3102 (1999).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, in Diode Lasers and Photonic Integrated Circuits, K. Chang eds. (Wiley, New York, 1995), pp. 106–108.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, in Diode Lasers and Photonic Integrated Circuits, K. Chang eds. (Wiley, New York, 1995), pp. 106–108.

Felix, C. L.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Hwu, R. J.

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

Lee, H.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Lindle, J. R.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Ma, X. Y.

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

Marciante, J. R.

J. R. Marciante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
[CrossRef]

Martinelli, R. U.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Meyer, J. R.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Mookherjea, S.

Vurgaftman, I.

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Xu, Y.

Xu, Z. T.

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

Yang, G. W.

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

Yariv, A.

Yeh, P.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

D. Botez, Appl. Phys. Lett. 74, 3102 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Marciante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. W. Yang, R. J. Hwu, Z. T. Xu, and X. Y. Ma, IEEE J. Sel. Top. Quantum Electron. 6, 577 (2000).
[CrossRef]

J. Mod. Opt. (1)

C. L. Felix, I. Vurgaftman, W. W. Bewley, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli, J. Mod. Opt. 49, 801 (2002).
[CrossRef]

Opt. Commun. (1)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Opt. Lett. (2)

Other (1)

L. A. Coldren and S. W. Corzine, in Diode Lasers and Photonic Integrated Circuits, K. Chang eds. (Wiley, New York, 1995), pp. 106–108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of a TBR waveguide. (b) Transverse field distribution of a guided TBR mode. Shaded central region, waveguide core; dashed curves, exponential decay of the form exp-ReSx.

Fig. 2
Fig. 2

(a) ReS as a function of effective index βrc/ω. A confined mode in a TBR waveguide is possible only in the bandgap region, with ReS>0. (b) Amplitude of the incident wave [dashed arrow in Fig. 1(a)] as a function of effective index. Solid curve, solutions with even symmetry; dashed curve, solutions of odd symmetry. Within the bandgap, at each zero-value point, Eq. (1) is satisfied, which indicates the existence of a guided TBR mode. Here we use βi=0, εco=ε2=12.25, Wco=49.85 µm, and L=32 µm.

Tables (1)

Tables Icon

Table 1 Parameters for Quasi-Single-Mode Guiding in a TBR Waveguidea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

kcoWco=mπ+phaseκγ-iΔk-S cothSL,m=eveneven modeoddodd mode,
kcoWco=mπ+Φ,Φ=phaseκ/-iΔk-κ2-Δk21/2.
Nmode2κΔkdiff2κπ/Wco=2κπWco.
MSRΔα+ΔgδG+1,

Metrics