Abstract

Highly efficient frequency conversions were conducted to obtain deep-ultraviolet single-mode coherent light by use of two-stage external cavities. A power of 154 mW at 252 nm was obtained with a conversion efficiency of more than 8% by doubly resonant sum-frequency mixing of 373-nm light from the first-stage conversion and 780-nm light from a single-mode Ti:sapphire laser. The output performance of the deep-ultraviolet light source is sufficient for use in the laser cooling of neutral silicon atoms.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
    [CrossRef]
  2. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
    [CrossRef] [PubMed]
  3. J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
    [CrossRef]
  4. W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
    [CrossRef]
  5. T. Fujii, H. Kumagai, K. Midorikawa, and M. Obara, Opt. Lett. 25, 1457 (2000).
    [CrossRef]
  6. H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, Appl. Opt. 42, 1036 (2003).
    [CrossRef] [PubMed]
  7. Y. Asakawa, H. Kumagai, K. Midorikawa, and M. Obara, Opt. Commun. 217, 311 (2003).
    [CrossRef]
  8. Y. Kaneda and S. Kubota, Opt. Lett. 20, 2204 (1995).
    [CrossRef]
  9. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  10. Y. Kaneda and S. Kubota, Appl. Opt. 36, 7766 (1997).
    [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

2003 (2)

H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, Appl. Opt. 42, 1036 (2003).
[CrossRef] [PubMed]

Y. Asakawa, H. Kumagai, K. Midorikawa, and M. Obara, Opt. Commun. 217, 311 (2003).
[CrossRef]

2000 (1)

1997 (1)

1996 (1)

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

1995 (1)

1993 (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

1992 (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

1983 (1)

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Asakawa, Y.

H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, Appl. Opt. 42, 1036 (2003).
[CrossRef] [PubMed]

Y. Asakawa, H. Kumagai, K. Midorikawa, and M. Obara, Opt. Commun. 217, 311 (2003).
[CrossRef]

Behringer, R. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Berggren, K. K.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Celotta, R. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Fujii, T.

Fujita, J.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Iwane, T.

Kaneda, Y.

Kishimoto, T.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kubota, S.

Kumagai, H.

Martin, W. C.

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

Matsui, S.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

McClelland, J. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Midorikawa, K.

Morinaga, M.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Obara, M.

Palm, E. C.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Prentiss, M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Scholten, R. E.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Shimizu, F.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Timp, G.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Yasuda, M.

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Zalubas, R.

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

Nature (1)

J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, and F. Shimizu, Nature 380, 691 (1996).
[CrossRef]

Opt. Commun. (2)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Y. Asakawa, H. Kumagai, K. Midorikawa, and M. Obara, Opt. Commun. 217, 311 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 76, 1636 (1992).
[CrossRef]

Science (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Plots of the output power of the 252-nm radiation as a function of the input power of the 780-nm radiation into the second cavity. The power of the 373-nm light is constant at 0.63 W.

Fig. 2
Fig. 2

Plots of the SFG efficiency to show the 252-nm radiation as a function of the input power of the 780-nm radiation into the second cavity. The power of the 373-nm light is constant at 0.63 W.

Fig. 3
Fig. 3

Plots of the intracavity losses at 373 and 780 nm as a function of the input power of the 780-nm radiation into the second cavity. The power of the 373-nm light is constant at 0.63 W.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PSFG=γSFGε373ε780P373P780,
γSFG=8ω373ω780deff2πn373n780n252c3ε0kl exp-αlhB,ζ,
ηSFG=γSFGε373ε780P373P780P373+P780.
αintra=Pin-PrefPenh,
ε=Pleak,onPleak,off.
αintra=αLL+αNL=αLL+γSFGTinPSFG1/2,
αNL,373=ω373ω373+ω780γSFGε780P780,
αNL,780=ω780ω373+ω780γSFGε373P373.
ε=Tin1-Rin1/21-αintra1/22Meff,

Metrics