Abstract

A polarization-selective photonic stop band is demonstrated in a new chiral fiber structure with double-helix symmetry. The stop band exists for only circularly polarized radiation with the same handedness as the structure and is centered at a wavelength in the fiber equal to the fiber pitch. When one part of the chiral fiber is twisted about its axis, a localized mode is produced, which can be tuned across the gap by changing the twist angle. Observations in single-mode fibers are in good agreement with one-dimensional simulations of a dispersive cholesteric material. At higher frequencies, however, we find a sharp onset of a broad polarization-selective scattering band, which is not present in one-dimensional simulations.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).
  3. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, England, 1977).
  4. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
    [CrossRef]
  5. Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
    [CrossRef]
  6. K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
    [CrossRef]
  7. A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).
  8. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
    [CrossRef] [PubMed]
  9. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
    [CrossRef]
  10. V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent 6, 396, 859 (May 28, 2002).
  11. V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).
    [CrossRef]
  12. V. I. Kopp, R. Bose, and A. Z. Genack, Opt. Lett. 28, 349 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (1)

V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

2001 (2)

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

2000 (1)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

1999 (2)

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

1998 (1)

Bose, R.

Brett, M. J.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, England, 1977).

Fan, B.

Genack, A. Z.

V. I. Kopp, R. Bose, and A. Z. Genack, Opt. Lett. 28, 349 (2003).
[CrossRef] [PubMed]

V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent 6, 396, 859 (May 28, 2002).

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Jeon, Y.-J.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

Kee, C.-S.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kim, J.-E.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kopp, V. I.

V. I. Kopp, R. Bose, and A. Z. Genack, Opt. Lett. 28, 349 (2003).
[CrossRef] [PubMed]

V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent 6, 396, 859 (May 28, 2002).

Lakhtakia, A.

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Lee, J.-C.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

Park, H. Y.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Ujihara, K.

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).

Vithana, H. K. M.

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Yang, Y.-C.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Yokoyama, H.

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

Nature (1)

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Opt. Commun. (1)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

Phys. Rev. E (1)

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

Other (4)

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, England, 1977).

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent 6, 396, 859 (May 28, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Examples of fibers with (a) single- and (b) double-helix symmetry.

Fig. 2
Fig. 2

Double-helix polymeric rod with a rectangular cross section. The arrow in the middle indicates the place where the fiber was cut and twisted around its axis.

Fig. 3
Fig. 3

Broadband polarized spectra of microwave radiation transmitted through the polymeric rod, shown in Fig. 2. a, Transmission spectrum on a semilog scale. b, Delay time obtained from the phase derivative of the transmitted RCP and LCP fields and the ratio of the transmission shown on a linear scale.

Fig. 4
Fig. 4

Narrowband spectrum of RCP transmission through the structure in Fig. 2.

Fig. 5
Fig. 5

RCP transmission through the structure in Fig. 2, which is cut in the middle and twisted by 85°.

Fig. 6
Fig. 6

Delay time obtained from the phase derivative for RCP transmission through a twisted structure.

Metrics