Abstract

Efficient outcoupling of surface-plasma waves to radiation modes by use of dielectric diffraction gratings on a flat metallic surface is discussed. The dielectric gratings, which have a surface-relief structure with only several tens of nanometers in peak-to-trough height on a flat metal surface, can efficiently extract radiation modes propagating in free space from the surface-plasmon modes. An outcoupling efficiency of 50% is estimated with the rigorous coupled-wave diffraction theory, and it is confirmed by the experiment.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okamoto, T. Kamiyama, and I. Yamaguchi, Opt. Lett. 18, 1570 (1993).
    [CrossRef]
  2. C. Jung, S. Yee, and K. Kuhn, Appl. Opt. 34, 946 (1995).
    [CrossRef] [PubMed]
  3. P. J. Kajenski, Opt. Eng. 36, 263 (1997).
    [CrossRef]
  4. G. I. Stegeman and J. J. Burke, Opt. Lett. 8, 383 (1983).
    [CrossRef] [PubMed]
  5. J. J. Burke and G. I. Stegeman, Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  6. W. Rothballer, Opt. Commun. 20, 429 (1977).
    [CrossRef]
  7. N. Garcia, Opt. Commun. 45, 307 (1983).
    [CrossRef]
  8. B. Rothenhausler and W. Knoll, Appl. Phys. Lett. 51, 783 (1987).
    [CrossRef]
  9. Y. Wang, Appl. Phys. Lett. 67, 2759 (1995).
    [CrossRef]
  10. J. Homola, R. Slavik, and J. Ctyroky, Opt. Lett. 22, 1403 (1997).
    [CrossRef]
  11. P. J. Kajenski, Opt. Eng. 36, 1537 (1997).
    [CrossRef]
  12. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), p. 5.
  14. B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
    [CrossRef]

1997 (3)

P. J. Kajenski, Opt. Eng. 36, 263 (1997).
[CrossRef]

J. Homola, R. Slavik, and J. Ctyroky, Opt. Lett. 22, 1403 (1997).
[CrossRef]

P. J. Kajenski, Opt. Eng. 36, 1537 (1997).
[CrossRef]

1995 (3)

Y. Wang, Appl. Phys. Lett. 67, 2759 (1995).
[CrossRef]

B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
[CrossRef]

C. Jung, S. Yee, and K. Kuhn, Appl. Opt. 34, 946 (1995).
[CrossRef] [PubMed]

1993 (1)

1987 (1)

B. Rothenhausler and W. Knoll, Appl. Phys. Lett. 51, 783 (1987).
[CrossRef]

1986 (1)

J. J. Burke and G. I. Stegeman, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1983 (2)

1982 (1)

1977 (1)

W. Rothballer, Opt. Commun. 20, 429 (1977).
[CrossRef]

Burke, J. J.

J. J. Burke and G. I. Stegeman, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman and J. J. Burke, Opt. Lett. 8, 383 (1983).
[CrossRef] [PubMed]

Ctyroky, J.

Fischer, B.

B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
[CrossRef]

Garcia, N.

N. Garcia, Opt. Commun. 45, 307 (1983).
[CrossRef]

Gaylord, T. K.

Homola, J.

Jung, C.

Kajenski, P. J.

P. J. Kajenski, Opt. Eng. 36, 263 (1997).
[CrossRef]

P. J. Kajenski, Opt. Eng. 36, 1537 (1997).
[CrossRef]

Kamiyama, T.

Knoll, W.

B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
[CrossRef]

B. Rothenhausler and W. Knoll, Appl. Phys. Lett. 51, 783 (1987).
[CrossRef]

Kuhn, K.

Moharam, M. G.

Okamoto, T.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), p. 5.

Rothballer, W.

W. Rothballer, Opt. Commun. 20, 429 (1977).
[CrossRef]

Rothenhausler, B.

B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
[CrossRef]

B. Rothenhausler and W. Knoll, Appl. Phys. Lett. 51, 783 (1987).
[CrossRef]

Slavik, R.

Stegeman, G. I.

J. J. Burke and G. I. Stegeman, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman and J. J. Burke, Opt. Lett. 8, 383 (1983).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, Appl. Phys. Lett. 67, 2759 (1995).
[CrossRef]

Yamaguchi, I.

Yee, S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Rothenhausler and W. Knoll, Appl. Phys. Lett. 51, 783 (1987).
[CrossRef]

Y. Wang, Appl. Phys. Lett. 67, 2759 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

W. Rothballer, Opt. Commun. 20, 429 (1977).
[CrossRef]

N. Garcia, Opt. Commun. 45, 307 (1983).
[CrossRef]

Opt. Eng. (2)

P. J. Kajenski, Opt. Eng. 36, 263 (1997).
[CrossRef]

P. J. Kajenski, Opt. Eng. 36, 1537 (1997).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

J. J. Burke and G. I. Stegeman, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Thin Solid Films (1)

B. Fischer, B. Rothenhausler, and W. Knoll, Thin Solid Films 258, 247 (1995).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), p. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of ATR.

Fig. 2
Fig. 2

(a) RCWT estimation results of diffraction efficiencies and (b) resonance angles as functions of the thickness of the grating layer. The grating aspect ratio is 0.5. The wavelength of the incident light is 633 nm and the thickness of the silver layer is 50 nm.

Fig. 3
Fig. 3

Diffraction efficiencies obtained from the experiment (solid curves) and the RCWT calculation (dashed curves) as functions of the angle of TM-polarization incidence. The period of the dielectric grating is 650 nm, the thickness of the silver layer is 40 nm, and the grating thickness is 66 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

kω=wcp sin θ,
k sin θr=ksp-qK,  q=0,±1,±2,,

Metrics