Abstract

The nonlinear refractive index n2 of silica fiber (24 m) and erbium-doped fiber (10 m) is measured to within an accuracy of 5% by use of time-delayed photorefractive beam coupling of intense 53-ps, 1.064-µm pulses that experience self-phase modulation in the fibers. The resultant induced grating autocorrelation response yields a value of n2/Aeff and a calibration standard for the fiber. A phase shift of the order of 0.19π can be detected and is limited only by laser amplitude fluctuations. A unique advantage of this technique is its ability to measure n2 accurately in short lengths z25 m of fiber, whereas other approaches typically use much longer lengths of fiber z100 m.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, Proc. IEEE 68, 1232 (1980).
    [CrossRef]
  2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
    [CrossRef]
  3. R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
    [CrossRef]
  4. Y. Namihira, A. Miyata, and N. Tanahashi, Electron. Lett. 30, 1171 (1994).
    [CrossRef]
  5. S. V. Chernikov and J. R. Taylor, Opt. Lett. 21, 1559 (1996).
    [CrossRef] [PubMed]
  6. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  7. D. Monzon-Hernandez, A. N. Starodumov, Yu. O. Barmenkov, I. Torres-Gomez, and F. Mendoza-Santoyo, Opt. Lett. 23, 1274 (1998).
    [CrossRef]
  8. R. Trebino, C. C. Hayden, A. M. Johnson, W. M. Simpson, and A. M. Levine, Opt. Lett. 15, 1079 (1990).
    [CrossRef] [PubMed]
  9. A. M. Levine, E. Özizmir, R. Trebino, C. C. Hayden, A. M. Johnson, and K. L. Tokuda, J. Opt. Soc. Am. B 11, 1609 (1994).
    [CrossRef]
  10. Fiber provided to A. M. Johnson by R. H. Stolen when both were at AT&T Bell Labs.
  11. G. Yang and Y. R. Shen, Opt. Lett. 9, 510 (1984).
    [CrossRef] [PubMed]
  12. X. Zhu and W. Sibbett, IEEE J. Quantum Electron. QE-27, 101 (1991).
    [CrossRef]
  13. K. S. Kim, W. A. Reed, R. H. Stolen, and K. W. Quoi, Opt. Lett. 19, 257 (1994).
    [CrossRef] [PubMed]
  14. R. H. Stolen, W. A. Reed, K. S. Kim, and G. T. Harvey, J. Lightwave Technol. 16, 1006 (1998).
    [CrossRef]
  15. C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. QE-8, 429 (1972).
    [CrossRef]
  16. The simplicity of the technique developed by Stolen and Lin (Ref.) lies in the fact that one can estimate the maximum phase shift by simply counting the peaks in the spectrum. One can in principle take continuous measurements of the phase shift by fitting the spectrum to complicated integrals listed in Ref. .
  17. H. Garcia, A. M. Johnson, and S. Trivedi, Phys. Status Solidi B 220, 47 (2000).
    [CrossRef]

2000

H. Garcia, A. M. Johnson, and S. Trivedi, Phys. Status Solidi B 220, 47 (2000).
[CrossRef]

1998

1996

1994

1991

X. Zhu and W. Sibbett, IEEE J. Quantum Electron. QE-27, 101 (1991).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

R. Trebino, C. C. Hayden, A. M. Johnson, W. M. Simpson, and A. M. Levine, Opt. Lett. 15, 1079 (1990).
[CrossRef] [PubMed]

1984

1980

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

1978

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

1972

C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. QE-8, 429 (1972).
[CrossRef]

Barmenkov, Yu. O.

Boskovic, A.

Chernikov, S. V.

Garcia, H.

H. Garcia, A. M. Johnson, and S. Trivedi, Phys. Status Solidi B 220, 47 (2000).
[CrossRef]

Gruner-Nielsen, L.

Gustafson, T. K.

C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. QE-8, 429 (1972).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

Harvey, G. T.

Hayden, C. C.

Johnson, A. M.

Kim, K. S.

Levine, A. M.

Levring, O. A.

Lin, C.

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Lin, C. H.

C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. QE-8, 429 (1972).
[CrossRef]

Mendoza-Santoyo, F.

Miyata, A.

Y. Namihira, A. Miyata, and N. Tanahashi, Electron. Lett. 30, 1171 (1994).
[CrossRef]

Monzon-Hernandez, D.

Namihira, Y.

Y. Namihira, A. Miyata, and N. Tanahashi, Electron. Lett. 30, 1171 (1994).
[CrossRef]

Özizmir, E.

Quoi, K. W.

Reed, W. A.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

Shen, Y. R.

Sibbett, W.

X. Zhu and W. Sibbett, IEEE J. Quantum Electron. QE-27, 101 (1991).
[CrossRef]

Simpson, W. M.

Starodumov, A. N.

Stolen, R. H.

R. H. Stolen, W. A. Reed, K. S. Kim, and G. T. Harvey, J. Lightwave Technol. 16, 1006 (1998).
[CrossRef]

K. S. Kim, W. A. Reed, R. H. Stolen, and K. W. Quoi, Opt. Lett. 19, 257 (1994).
[CrossRef] [PubMed]

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Fiber provided to A. M. Johnson by R. H. Stolen when both were at AT&T Bell Labs.

Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

Tanahashi, N.

Y. Namihira, A. Miyata, and N. Tanahashi, Electron. Lett. 30, 1171 (1994).
[CrossRef]

Taylor, J. R.

Tokuda, K. L.

Torres-Gomez, I.

Trebino, R.

Trivedi, S.

H. Garcia, A. M. Johnson, and S. Trivedi, Phys. Status Solidi B 220, 47 (2000).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

Yang, G.

Zhu, X.

X. Zhu and W. Sibbett, IEEE J. Quantum Electron. QE-27, 101 (1991).
[CrossRef]

Electron. Lett.

Y. Namihira, A. Miyata, and N. Tanahashi, Electron. Lett. 30, 1171 (1994).
[CrossRef]

IEEE J. Quantum Electron.

X. Zhu and W. Sibbett, IEEE J. Quantum Electron. QE-27, 101 (1991).
[CrossRef]

IEEE J. Quantum Electron.

C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. QE-8, 429 (1972).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Phys. Status Solidi B

H. Garcia, A. M. Johnson, and S. Trivedi, Phys. Status Solidi B 220, 47 (2000).
[CrossRef]

Proc. IEEE

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

Other

The simplicity of the technique developed by Stolen and Lin (Ref.) lies in the fact that one can estimate the maximum phase shift by simply counting the peaks in the spectrum. One can in principle take continuous measurements of the phase shift by fitting the spectrum to complicated integrals listed in Ref. .

Fiber provided to A. M. Johnson by R. H. Stolen when both were at AT&T Bell Labs.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

IGA experimental arrangement consisting of time-delayed two-wave mixing in GaAs:Cr or CdMnTe:V photorefractive crystals.

Fig. 2
Fig. 2

Combined plot of an IGA trace with the theoretical fit for 24-m silica fiber and a Gaussian fitted autocorrelation trace of a 1.064-µm input pulse (Pavg=0.5 W, Ppeak=95 W, and ω0τpQ=10.70).

Fig. 3
Fig. 3

Plot of ω0τpQ versus average power for 24-m silica fiber. The slope of the graph is proportional to n2/Aeff.

Fig. 4
Fig. 4

Theoretical IGA and intensity autocorrelation traces predicting the minimum detectable ω0τpQ at the onset of pulse narrowing due to SPM. The simulation assumes a mode-locked laser with 5% amplitude fluctuation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κτ2=-EtE*t+τdt2,
Et=E0 exp-2 ln 2tτp2-iω0t+ϕt,
ϕt=ω0τpQ exp-4 ln 2tτp2.
Δϕ=ω0τpQ.
n2Aeff=nτpcλtrL32π2ln 2π×107-1ω0τpQPavg,
ω0τpQM=3.18ϕMπϕMπ22N-1,

Metrics