Abstract

We demonstrate a new nanoscale spectroscopic technique that combines subwavelength near-field imaging with broadband interference spectroscopy. We apply this technique to study phase spectra of surface plasmons in individual gold nanoparticles and nanoparticle dimers. Collective plasmon oscillations in selected nanostructures are excited by a femtosecond white-light continuum transmitted through a subwavelength aperture. The interference spectra detected in the far field result from the coherent superposition of the aperture field and the secondary field re-emitted by the nanostructure. The analysis of these spectra allows us to accurately measure the positions and damping constants of single-nanostructure plasmon resonances.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
    [CrossRef]
  2. H. Raether, Surface Plasmons, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  3. M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
    [CrossRef]
  4. A. Liu, A. Rahmani, G. W. Bryant, L. J. Richter, and S. J. Stranick, J. Opt. Soc. Am. A 18, 704 (2001).
    [CrossRef]
  5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
    [CrossRef]
  6. E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
    [CrossRef] [PubMed]
  7. R. Hillenbrand and F. Keilmann, Appl. Phys. B 73, 239 (2001).
    [CrossRef]
  8. J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
    [CrossRef]
  9. S. Link and M. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

2002 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
[CrossRef]

2001 (4)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

A. Liu, A. Rahmani, G. W. Bryant, L. J. Richter, and S. J. Stranick, J. Opt. Soc. Am. A 18, 704 (2001).
[CrossRef]

R. Hillenbrand and F. Keilmann, Appl. Phys. B 73, 239 (2001).
[CrossRef]

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

1999 (1)

S. Link and M. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

1991 (1)

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

1988 (1)

H. Raether, Surface Plasmons, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Bryant, G. W.

El-Sayed, M.

S. Link and M. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

Eng, L. M.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Grafström, S.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, Appl. Phys. B 73, 239 (2001).
[CrossRef]

Keilmann, F.

R. Hillenbrand and F. Keilmann, Appl. Phys. B 73, 239 (2001).
[CrossRef]

Kostrelak, R. L.

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
[CrossRef]

Link, S.

S. Link and M. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

Liu, A.

Loppacher, Ch.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

Rahmani, A.

Richter, L. J.

Schlaphof, F.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Seidel, J.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Stranick, S. J.

Trautmann, J. K.

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Trogisch, S.

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, Appl. Phys. B 73, 239 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J. Seidel, S. Grafström, Ch. Loppacher, S. Trogisch, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 79, 2291 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

S. Link and M. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

Phys. Rev. Lett. (2)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 74021 (2002).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostrelak, Science 251, 1468 (1991).
[CrossRef] [PubMed]

Springer Tracts in Modern Physics (1)

H. Raether, Surface Plasmons, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Illustration that the signal measured by a far-field detector is due to the coherent superposition of an aperture driving field, E0Aωexpiωt, and a phase-shifted field, E0pωexpiωt+ϕ, emitted by a nanoparticle. b, Schematics of a near-field, broadband extinction spectrometer–microscope. The femtosecond white-light continuum generated in a sapphire plate is delivered to a sample through a near-field fiber probe. The sample is mounted on an XYZ scanner. In the imaging mode, the light transmitted through the sample is collected with a photomultiplier tube (PMT); in the spectroscopic mode, the transmitted light is dispersed in a spectrometer and is detected with a CCD. c, Spectrum of the femtosecond white light at the output of a near-field fiber tip.

Fig. 2
Fig. 2

a, Typical topographic (TOPO) and near-field (femtosecond white-light illumination) images of an isolated gold nanoparticle (the nominal size is 50 nm; the visible size is larger because of resolution limitations of the NSOM). b, Near-field extinction spectrum (solid red curve) of an individual 50nm gold nanoparticle compared with interference (dotted black curve) and phase (dashed blue curve) spectra (ω0=2.245 eV and Γ=0.18 eV) calculated with a forced harmonic oscillator model (inset). c, Position of the plasmon resonance derived from the near-field interference spectra as a function of the nanoparticle diameter.

Fig. 3
Fig. 3

Near-field extinction spectrum (red curve) of a nanoparticle dimer (insets); particle sizes are 50 nm. The dotted black and dashed blue curves are interference and phase spectra, respectively, calculated with a coupled harmonic oscillator model (ω01=2.21 eV, ω02=2.13 eV, Γ1=Γ2=0.22 eV, and Δ12=0.16 eV; ω01 and ω02 are single-particle plasmon energies, and Δ12 is the coupling strength).

Metrics