Abstract

An erbium-doped fiber laser that emits a series of spectrally scanned pulses is used to monitor an array of fiber Bragg grating (FBG) sensors. The cavity for this Fabry–Perot laser is formed by two spectrally selective reflectors: a rotating mirror–grating combination for scanning the reflectance peak wavelength and a fiber Fabry–Perot interferometer (FFPI) with a periodic reflectance spectrum. During a scan of the rotating mirror, the laser produces a set of Q-switched pulses over the 1522–1568-nm spectral range at each of the FFPI reflectance peak wavelengths. This laser is used to simultaneously demonstrate wavelength-division multiplexing of FBGs with reflectance peaks in different spectral regimes and time-division multiplexing of FBGs with overlapping spectra. The spectral location of the FBG peaks was determined to an accuracy of 1.4 pm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
    [CrossRef]
  3. S. H. Yun, D. J. Richardson, and B. Y. Kim, Opt. Lett. 23, 843 (1998).
    [CrossRef]
  4. X. Wan and H. F. Taylor, IEEE Photon Technol. Lett. 15, 188 (2003).
    [CrossRef]
  5. X. Wan and H. F. Taylor, Opt. Lett. 27, 1388 (2002).
    [CrossRef]

2003

X. Wan and H. F. Taylor, IEEE Photon Technol. Lett. 15, 188 (2003).
[CrossRef]

2002

1998

1996

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

1993

Bennion, I.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

Berkoff, T. A.

Jackson, D. A.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

Kersey, A. D.

Kim, B. Y.

Lobo Ribeiro, A. B.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

Morey, W. W.

Rao, Y. J.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

Richardson, D. J.

Taylor, H. F.

X. Wan and H. F. Taylor, IEEE Photon Technol. Lett. 15, 188 (2003).
[CrossRef]

X. Wan and H. F. Taylor, Opt. Lett. 27, 1388 (2002).
[CrossRef]

Wan, X.

X. Wan and H. F. Taylor, IEEE Photon Technol. Lett. 15, 188 (2003).
[CrossRef]

X. Wan and H. F. Taylor, Opt. Lett. 27, 1388 (2002).
[CrossRef]

Yun, S. H.

Zhang, L.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

IEEE Photon Technol. Lett.

X. Wan and H. F. Taylor, IEEE Photon Technol. Lett. 15, 188 (2003).
[CrossRef]

Opt. Commun.

Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (1996).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement. Pd, photodetector.

Fig. 2
Fig. 2

Spectral characteristics of the FFPI (fixed in time) and the tunable reflector (which translates linearly with time).

Fig. 3
Fig. 3

Illustration of the evolution of the laser cavity loss, cavity gain, and Q-switched pulses.

Fig. 4
Fig. 4

The temporal reflection signal (a) near the 1533-nm wavelength, (b) near the 1550-nm wavelength and with FBGa1 and FBGa2 at room temperature, and (c) near the 1550-nm wavelength and with FBGa2 at 120 °C. In each of these three plots, the pulses with the highest (and nearly constant) amplitudes represent the fiber end reflections. Increasing time represents increasing wavelength or decreasing frequency.

Fig. 5
Fig. 5

Undelayed and delayed FBG reflectance spectra. (a) All sensors at room temperature. (b) FBGa2 heated to 120 °C.

Fig. 6
Fig. 6

Spectral shift of FBGb2 monitored while the temperature was changing. Inset, indication of the noise in the measurement, with expanded horizontal and vertical scales.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RFν=r1+r2+2r1r21/2cos4πnLν/c,

Metrics