Abstract

We use the electric-field-induced second-harmonic (EFISH) technique to characterize, for the first time to our knowledge, the profile of the electric field induced within the bulk of fused silica glass samples both during and after thermal-poling treatment. During thermal poling, the initially homogeneous electric field decays exponentially from the anodic to the cathodic surface. After the poling treatment, a permanent electric field is induced within the bulk of the sample. It also decays exponentially from a positive value on the anodic surface to a negative value on the cathodic surface. The exponential decay constant depends on the thickness of the sample, the poling time, and the temperature. The temperature evolution of this constant makes it possible to retrieve the activation energy of the rapidly moving ionic species. This ensemble of observations indicates that modifications to models previously proposed are necessary.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
    [CrossRef] [PubMed]
  2. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
    [CrossRef]
  3. A. Le Calvez, E. Freysz, and A. Ducasse, Eur. Phys. J. D 1, 223 (1998).
    [CrossRef]
  4. T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 15 (1998).
    [CrossRef]
  5. P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
    [CrossRef]
  6. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
    [CrossRef]
  7. H. Guillet de Chatellus, S. Montant, and E. Freysz, Opt. Lett. 25, 1723 (2000).
    [CrossRef]
  8. M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
    [CrossRef]
  9. Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
    [CrossRef]
  10. H. Guillet de Chatellus and E. Freysz, Opt. Express 9, 586 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2001

2000

H. Guillet de Chatellus, S. Montant, and E. Freysz, Opt. Lett. 25, 1723 (2000).
[CrossRef]

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

1999

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[CrossRef]

1998

A. Le Calvez, E. Freysz, and A. Ducasse, Eur. Phys. J. D 1, 223 (1998).
[CrossRef]

T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 15 (1998).
[CrossRef]

1996

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

1994

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
[CrossRef]

1991

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[CrossRef]

T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 15 (1998).
[CrossRef]

Bernage, P.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Botey, M.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[CrossRef]

T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 15 (1998).
[CrossRef]

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
[CrossRef] [PubMed]

Douay, M.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Ducasse, A.

A. Le Calvez, E. Freysz, and A. Ducasse, Eur. Phys. J. D 1, 223 (1998).
[CrossRef]

Duthrage, P.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Freysz, E.

Guillet de Chatellus, H.

Kazansky, P. G.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

Le Calvez, A.

A. Le Calvez, E. Freysz, and A. Ducasse, Eur. Phys. J. D 1, 223 (1998).
[CrossRef]

Martinelli, G.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Montant, S.

Mukherjee, N.

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
[CrossRef] [PubMed]

Myers, R. A.

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
[CrossRef] [PubMed]

Niay, P.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Orriols, G.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Pi, F.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Qiu, M.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Quiquempois, Y.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Russel, P. S.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

Sellars, J.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Sessler, G. M.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

Smith, A. R.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

Valaseca, R.

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[CrossRef]

Yang, G. M.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

Appl. Phys. Lett.

P. G. Kazansky, A. R. Smith, P. S. Russel, and G. M. Yang, G. M. Sessler, Appl. Phys. Lett. 68, 269 (1996).
[CrossRef]

M. Qiu, R. Valaseca, M. Botey, J. Sellars, F. Pi, and G. Orriols, Appl. Phys. Lett. 76, 3346 (2000).
[CrossRef]

Eur. Phys. J. D

A. Le Calvez, E. Freysz, and A. Ducasse, Eur. Phys. J. D 1, 223 (1998).
[CrossRef]

J. Appl. Phys.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[CrossRef]

J. Opt. Soc. Am. B

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
[CrossRef]

Opt. Commun.

Y. Quiquempois, G. Martinelli, P. Duthrage, P. Bernage, P. Niay, and M. Douay, Opt. Commun. 176, 479 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the experimental setup.

Fig. 2
Fig. 2

Evolution of the EFISH signal in the volume of the sample during the thermal-poling treatment. The high voltage V=3 kV is applied across the sample (a) at room temperature before the thermal poling, (b) at T=350 °C during the thermal-poling treatment, and (c) at room temperature after the thermal poling. (d) High voltage is removed after the thermal poling (room temperature).

Fig. 3
Fig. 3

Profile of the electric field EV induced by the poling treatment at T=25 °C and V=3 kV before (diamonds) (T=350 °C and V=3 kV), during (triangles) (T=25 °C and V=0 kV), and after (dots) the thermal-poling treatment.

Fig. 4
Fig. 4

Evolution of the harmonic signal 0.30 mm below the anodic and cathodic surface at 240 °C. The 3-kV voltage is turned on from t=80 to 510 s. Inset, evolution of the time constants of the two dynamics with the temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Aλ/2,z=Aλ/2,z,Lχ2zA2λ,L0Lexp-iΔkλydy,

Metrics