Abstract

Spectroscopic measurements were used to monitor the optical interference of ordinary (o-ray) waves with extraordinary (e-ray) waves by incidence of plane-polarized light and transmission through piezoelectric crystals (α-quartz, LiNbO3, and LiTaO3). This observation confirms that the rotations of the vibration planes of the o- and e-ray waves originate from the dynamic gratings induced by the electric field of the incident light. This is a self-modulation process of the polarized incident light in piezoelectric crystals.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984).
  2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. Press, Oxford, 1954).
  3. D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964).
  4. C. Z. Tan, J. Phys. Chem. Solids 64, 121 (2003).
  5. C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
    [CrossRef]
  6. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  7. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  8. H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
    [CrossRef]
  9. X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
    [CrossRef]
  10. R. G. Hunsperger, Integrated Optics Theory and Technology (Springer-Verlag, Berlin, 1982).
    [CrossRef]

2003 (1)

C. Z. Tan, J. Phys. Chem. Solids 64, 121 (2003).

2002 (2)

C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

1997 (1)

H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
[CrossRef]

1988 (1)

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

1985 (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

1984 (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984).

1982 (1)

R. G. Hunsperger, Integrated Optics Theory and Technology (Springer-Verlag, Berlin, 1982).
[CrossRef]

1964 (1)

D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964).

1954 (1)

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. Press, Oxford, 1954).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984).

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. Press, Oxford, 1954).

Chen, H.

C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
[CrossRef]

Günter, P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

Huang, K.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. Press, Oxford, 1954).

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics Theory and Technology (Springer-Verlag, Berlin, 1982).
[CrossRef]

Liu, Z. G.

C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
[CrossRef]

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Pan, X.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Pines, D.

D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964).

Shneider, M. N.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Sonehara, T.

H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
[CrossRef]

Takagi, S.

H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
[CrossRef]

Tan, C. Z.

C. Z. Tan, J. Phys. Chem. Solids 64, 121 (2003).

C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
[CrossRef]

Tanaka, H.

H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984).

J. Phys. Chem. Solids (1)

C. Z. Tan, J. Phys. Chem. Solids 64, 121 (2003).

Phys. Rev. Lett. (2)

H. Tanaka, T. Sonehara, and S. Takagi, Phys. Rev. Lett. 79, 881 (1997).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Solid State Commun. (1)

C. Z. Tan, H. Chen, and Z. G. Liu, Solid State Commun. 124, 235 (2002).
[CrossRef]

Other (6)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

R. G. Hunsperger, Integrated Optics Theory and Technology (Springer-Verlag, Berlin, 1982).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984).

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. Press, Oxford, 1954).

D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Representative transmission spectra of an α-quartz block (40.1 mm×40.1 mm×40.1 mm in the x, y, and z directions) obtained from incident plane-polarized light at different angles of the polarization direction with respect to the optic axis. The polarized light is incident normally onto the xz plane and propagates along the y direction.

Fig. 2
Fig. 2

Amplitude A of the interference fringes (A=Tmax-Tmin) of α-quartz, LiNbO3, and LiTaO3, and its dependence on the angle ϕ between the polarization direction of the incident light and the optic axis. The symbols represent the experimental data, and the curves are best fits obtained with A=k sinα+βsinϕ-βcosϕ+α, where k, α, and β are constants described in the text and Fig. 3. The evaluated values of α and β for the three crystals are given in the text.

Fig. 3
Fig. 3

Schematic depiction of the vector E of the electric field of the plane-polarized incident light and the rotated vectors of dielectric displacements Do and De in piezoelectric crystals. OC and OD denote the subcomponents of OA and OB in the directions of OB and OA, respectively.

Metrics