Abstract

The effect of the finite extinction ratio of an electro-optic modulator (EOM) on the Brillouin frequency measurement of a distributed Brillouin-based fiber optic sensor is studied. An EOM with a finite extinction ratio limits the application of Brillouin optical time domain analysis in a distributed Brillouin-based fiber optic sensor. This results in confusion in specifying the location of the strained region and in error in detecting the Brillouin frequency and hence in strain and temperature measurement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 18, 1561 (1993).
    [CrossRef]
  2. T. Kurashima, T. Horiguchi, and M. Tateda, Appl. Opt. 29, 2219 (1990).
    [CrossRef] [PubMed]
  3. S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()
  4. S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  6. G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

1998 (1)

S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
[CrossRef]

1995 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

1993 (1)

1990 (1)

Afshaarvahid, S.

S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
[CrossRef]

Afshar V., S.

G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Bao, X.

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 18, 1561 (1993).
[CrossRef]

G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()

Chen, L.

S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()

G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

Devrelis, V.

S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
[CrossRef]

Ferrier, G. A.

G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()

Horiguchi, T.

Jackson, D. A.

Kurashima, T.

Munch, J.

S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
[CrossRef]

Tateda, M.

Webb, D. J.

Appl. Opt. (1)

J. Lightwave Technol. (2)

S. Afshar V., G. A. Ferrier, X. Bao, and L. Chen, “Brillouin spectral characterization of probe–pump distributed fiber optic sensors in the transient regime,” submitted to J. Lightwave Technol., ()

G. A. Ferrier, S. Afshar V., X. Bao, and L. Chen, “New spectral fitting method for distributed Brillouin sensing in the transient regime,” submitted to J. Lightwave Technol., ()

Opt. Lett. (1)

Phys. Rev. A (1)

S. Afshaarvahid, V. Devrelis, and J. Munch, Phys. Rev. A 57, 3961 (1998).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry used for simulating Brillouin-based fiber optic sensors. The relative Brillouin shifts of regions A, B, and C are 0, -31.9, and 31.9 MHz, respectively.

Fig. 2
Fig. 2

Brillouin spectral profiles of signals corresponding to the middle of region B for extinction ratios 30, 40, and 50 dB and .

Fig. 3
Fig. 3

For all profiles except Rx= there are three peaks, at -31.9,0, and 31.9 MHz. These peaks represent the Brillouin frequency shifts of regions B, A, and C, respectively.

Fig. 4
Fig. 4

Brillouin profiles of region B for several extinction ratios that we obtained by varying the pulse component of the Stokes beam.

Fig. 5
Fig. 5

Relative heights of peak 1–peak 2 and peak 1–peak 3 for several extinction ratios that we achieved by varying the leakage or pulse powers.

Fig. 6
Fig. 6

Brillouin profile for three fiber lengths. The length of region B is constant at 55 cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z-nctEp=ig1QEs+½αEp,
z+nctEs=-ig1Q*Ep-½αEs,
t+ΓQ=-ig2EpEs*,

Metrics