Abstract

We have demonstrated Raman amplification in small-core As–Se fiber. More than 20-dB of gain was observed in a 1.1-m length of fiber pumped by a nanosecond pulse of 10.8W peak power at 1.50 µm. The peak of the Raman gain occurred at a shift of 240 cm-1. The Raman gain coefficient is estimated to be 2.3×10-11 m/W, which is more than 300 times greater than that of silica. The large Raman gain coefficient coupled with the large IR transparency window of these fibers shows promise for development of As–Se Raman fiber lasers and amplifiers in the near-, mid-, and long-IR spectral regions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
    [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
    [CrossRef]
  3. V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
    [CrossRef]
  4. J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).
  5. J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
    [CrossRef]
  6. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
    [CrossRef]
  7. G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

2002 (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

1996 (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

1995 (3)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

1983 (1)

J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
[CrossRef]

Agarwal, G. P.

G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Aggarwal, I. D.

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Busse, L.

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Freitas, Jr., J. A.

J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
[CrossRef]

Harbold, J. M.

Ilday, F. O.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kung, F. H.

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Miklos, R.

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Miklos, R. E.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

Mossadegh, R.

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Nguyen, V. Q.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Pureza, P. C.

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Sanghera, J. S.

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Shaw, L. B.

Strom, U.

J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
[CrossRef]

Treacy, D. J.

J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
[CrossRef]

Wise, F. W.

J. Am. Ceram. Soc. (1)

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, F. H. Kung, and I. D. Aggarwal, J. Am. Ceram. Soc. 85, 2849 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, J. Lightwave Technol. 14, 743 (1996).
[CrossRef]

J. Non-Cryst. Solids (1)

J. A. Freitas, Jr., U. Strom, and D. J. Treacy, J. Non-Cryst. Solids 59–60, 875 (1983).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. S. Sanghera, I. D. Aggarwal, L. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, and R. Mossadegh, Proc. SPIE 2396, 7176 (1995).

Other (1)

G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Light transmitted through a small section of the small-core As–Se fiber used in this experiment, taken with an IR microscope. The core is 7 µm in diameter, and the total diameter of the fiber is 150 µm.

Fig. 2
Fig. 2

Typical loss spectrum of large-core As–Se fiber taken with a Fourier-transform IR spectrometer. The absorption at 4.5 µm is due to H–Se. This absorption can be significantly reduced with a slight modification of the glass’s composition.3

Fig. 3
Fig. 3

Experimental setup to measure the Raman gain in As–Se fiber: OPO, optical parametric oscillator.

Fig. 4
Fig. 4

Experimental results showing amplification of a 1.56µm diode laser. Left, the spectrum of the pump laser; right, the spectrum of the diode laser (Seed Only), the spontaneous Raman-scattered light (Pump Only), and the amplified diode laser (Seed and Pump). The diode laser’s spectrum was magnified by a factor of 10 to make it visible on this scale.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

GA=expgRP0LeffAeff,
Leff=1α1-e-αL,

Metrics