Abstract

It is shown that additive noise can inhibit modulation instability in laser equations of motion. A related self-starting condition for pulsation is obtained by employing a fluctuation–dissipation relation between noise and losses and a statistical mechanics approach. Entropy considerations are shown to play a crucial role. The quantum limit for self-starting is estimated.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  2. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
  3. H. Haken, Synergetics, 2nd enlarged ed. (Springer-Verlag, Berlin, 1978).
  4. G. P. Agrawal, IEEE Photon. Technol. Lett. 4, 562 (1992).
  5. T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).
  6. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 20, 350 (1995).
  7. F. Krausz, T. Brabec, and C. Spilmann, Opt. Lett. 16, 235 (1991).
  8. H. A. Haus and E. P. Ippen, Opt. Lett. 16, 1331 (1991).
  9. J. Herrmann, Opt. Commun. 98, 111 (1993).
  10. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, Opt. Lett. 18, 220 (1993).
  11. F. Krausz and T. Brabec, Opt. Lett. 18, 888 (1993).
  12. Y.-F. Chou, J. Wang, H.-H. Liu, and N.-P. Kuo, Opt. Lett. 19, 566 (1994).
  13. A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
  14. A. Gordon and B. Fischer, Opt. Commun. (to be published).
  15. For simplicity of notation Gm is defined here differently from Ref. ; here the Gm have a power of unity.
  16. This is obtained from Stratonovich calculus. Intuitively, Re[a*m(eW)/(2N) Gm] is the rate at which the noise supplies energy to the m th mode, which is (eW)/(2N), the power of the noise. The summation on m adds a factor of N.
  17. E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

2002 (2)

T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).

2001 (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

2000 (1)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).

1995 (1)

1994 (2)

Y.-F. Chou, J. Wang, H.-H. Liu, and N.-P. Kuo, Opt. Lett. 19, 566 (1994).

E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

1993 (3)

1992 (1)

G. P. Agrawal, IEEE Photon. Technol. Lett. 4, 562 (1992).

1991 (2)

1978 (1)

H. Haken, Synergetics, 2nd enlarged ed. (Springer-Verlag, Berlin, 1978).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

G. P. Agrawal, IEEE Photon. Technol. Lett. 4, 562 (1992).

Brabec, T.

Chen, C. J.

Chou, Y.-F.

Desurvire, E.

E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Fischer, B.

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).

A. Gordon and B. Fischer, Opt. Commun. (to be published).

Fujimoto, J. G.

Gordon, A.

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).

A. Gordon and B. Fischer, Opt. Commun. (to be published).

Haken, H.

H. Haken, Synergetics, 2nd enlarged ed. (Springer-Verlag, Berlin, 1978).

Haus, H. A.

Herrmann, J.

J. Herrmann, Opt. Commun. 98, 111 (1993).

Ippen, E. P.

Jacobson, J.

Kapitula, T.

T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).

Krausz, F.

Kuo, N.-P.

Kutz, J. N.

T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).

Liu, H.-H.

Menyuk, C. R.

Sandstede, B.

T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).

Spilmann, C.

Tamura, K.

Wai, P. K. A.

Wang, J.

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).

IEEE Photon. Technol. Lett. (1)

G. P. Agrawal, IEEE Photon. Technol. Lett. 4, 562 (1992).

J. Opt. Soc. Am. B (1)

T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B 19, 740 (2002).

Opt. Commun. (2)

J. Herrmann, Opt. Commun. 98, 111 (1993).

A. Gordon and B. Fischer, Opt. Commun. (to be published).

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).

Other (5)

For simplicity of notation Gm is defined here differently from Ref. ; here the Gm have a power of unity.

This is obtained from Stratonovich calculus. Intuitively, Re[a*m(eW)/(2N) Gm] is the rate at which the noise supplies energy to the m th mode, which is (eW)/(2N), the power of the noise. The summation on m adds a factor of N.

E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

H. Haken, Synergetics, 2nd enlarged ed. (Springer-Verlag, Berlin, 1978).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics