Abstract

Optical resolution beyond the diffraction limit can be achieved by use of a metallic nanoaperture in a near-field optical system. Conventional nanoapertures have very low power throughput. Using a numerical finite-difference time domain method, we discovered a unique C-shaped aperture that provides 3 orders of magnitude more power throughput than a conventional square aperture with a similar near-field spot size of 0.1λ Microwave experiments at 6 GHz quantitatively confirmed the simulated transmission enhancement. The high transmission of the C-aperture—or one of the related shapes—is linked to both a propagation mode in the aperture and local surface plasmons.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
    [CrossRef] [PubMed]
  2. D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
    [CrossRef]
  3. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
    [CrossRef]
  4. G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl. Opt. 34, 1215 (1995).
    [CrossRef] [PubMed]
  5. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
    [CrossRef]
  6. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
    [CrossRef]
  7. B. I. Yakobson and M. A. Paesler, Ultramicroscopy 57, 204 (1995).
    [CrossRef]
  8. F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
    [CrossRef]
  9. U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
    [CrossRef]
  10. T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
    [CrossRef]
  11. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
    [CrossRef]
  12. H. A. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  13. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
    [CrossRef]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
    [CrossRef]
  15. X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
    [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
  17. Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
    [CrossRef]
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

2002 (2)

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

1999 (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

1996 (1)

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

1995 (2)

1994 (2)

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
[CrossRef]

1992 (1)

F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
[CrossRef]

1986 (1)

Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

1985 (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

1984 (2)

D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

1972 (1)

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

1944 (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Ash, E. A.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Dutoit, B.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

Ebbesen, T. W.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

Fischer, F. C.

F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
[CrossRef]

Fischer, U. C.

U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
[CrossRef]

Fuchs, H.

U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
[CrossRef]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

Hafner, C.

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Hesselink, L.

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Holton, M.

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Itsumi, K.

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

Koglin, J.

U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
[CrossRef]

Kourogi, M.

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Leviatan, Y.

Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Lezec, H. J.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

Linke, R. A.

Morrison, G. H.

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Nettesheim, S.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Ohtsu, M.

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

Paesler, M. A.

B. I. Yakobson and M. A. Paesler, Ultramicroscopy 57, 204 (1995).
[CrossRef]

Pellerin, K. M.

Pohl, D.

D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

Valaskovic, G. A.

Yakobson, B. I.

B. I. Yakobson and M. A. Paesler, Ultramicroscopy 57, 204 (1995).
[CrossRef]

Yatsui, T.

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

Zapletal, M.

F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
[CrossRef]

Zeisel, D.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

Zenobi, R.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
[CrossRef]

D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

J. Appl. Phys. (1)

Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

J. Microsc. (1)

U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[CrossRef]

Nature (1)

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. E (1)

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Ultramicroscopy (3)

B. I. Yakobson and M. A. Paesler, Ultramicroscopy 57, 204 (1995).
[CrossRef]

F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

E2 distribution at 48 nm from the three apertures. (a) C, (b) square, (c) improved C (C2) with smaller spot size and higher intensity. Aperture geometries are outlined. (d), (e) E2 cross sections for the three apertures; the intensity is multiplied by 1000 for the square aperture.

Fig. 2
Fig. 2

Poynting vector plot of (a) the C-aperture and (b) the square aperture in the xz plane through the centers of the apertures. The solid black lines designate the metal plate.

Fig. 3
Fig. 3

Measured transmitted power versus distance d between the sample and the second waveguide.

Metrics