Abstract

Electric dipole radiation consists of traveling and evanescent plane waves. When radiation is detected in the far field, only the traveling waves will contribute to the intensity distribution, as the evanescent waves decay exponentially. We propose a method to spatially separate the traveling and evanescent waves before detection. It is shown that when the radiation passes through an interface, evanescent waves can be converted into traveling waves and can subsequently be observed in the far field. Let the radiation be observed under angle θt with the normal. Then there exists an angle θac such that for 0θt<θac all intensity originates in traveling waves, whereas for θac<θt<π/2 only evanescent waves contribute. It is shown that with this technique and under the appropriate conditions almost all far-field power can be provided by evanescent waves.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Arnoldus and T. F. George, Phys. Rev. A 43, 3675 (1991).
    [CrossRef] [PubMed]
  2. H. F. Arnoldus and J. T. Foley, Opt. Commun. 207, 7 (2002).
    [CrossRef]
  3. J. E. Sipe, Surf. Sci. 105, 489 (1981).
    [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), App. III, p. 890.
  5. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977).
  6. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1615 (1977).
  7. G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
    [CrossRef]
  8. É. Lalor and E. Wolf, Phys. Rev. Lett. 26, 1274 (1971).
    [CrossRef]

2002 (1)

H. F. Arnoldus and J. T. Foley, Opt. Commun. 207, 7 (2002).
[CrossRef]

1999 (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), App. III, p. 890.

1991 (1)

H. F. Arnoldus and T. F. George, Phys. Rev. A 43, 3675 (1991).
[CrossRef] [PubMed]

1981 (1)

J. E. Sipe, Surf. Sci. 105, 489 (1981).
[CrossRef]

1977 (2)

1971 (1)

É. Lalor and E. Wolf, Phys. Rev. Lett. 26, 1274 (1971).
[CrossRef]

1960 (1)

G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
[CrossRef]

Arnoldus, H. F.

H. F. Arnoldus and J. T. Foley, Opt. Commun. 207, 7 (2002).
[CrossRef]

H. F. Arnoldus and T. F. George, Phys. Rev. A 43, 3675 (1991).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), App. III, p. 890.

Foley, J. T.

H. F. Arnoldus and J. T. Foley, Opt. Commun. 207, 7 (2002).
[CrossRef]

George, T. F.

H. F. Arnoldus and T. F. George, Phys. Rev. A 43, 3675 (1991).
[CrossRef] [PubMed]

Kunz, R. E.

Lalor, É.

É. Lalor and E. Wolf, Phys. Rev. Lett. 26, 1274 (1971).
[CrossRef]

Lukosz, W.

Sipe, J. E.

J. E. Sipe, Surf. Sci. 105, 489 (1981).
[CrossRef]

Toraldo di Francia, G.

G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), App. III, p. 890.

É. Lalor and E. Wolf, Phys. Rev. Lett. 26, 1274 (1971).
[CrossRef]

J. Opt. Soc. Am. (2)

Nuovo Cimento (1)

G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
[CrossRef]

Opt. Commun. (1)

H. F. Arnoldus and J. T. Foley, Opt. Commun. 207, 7 (2002).
[CrossRef]

Phys. Rev. A (1)

H. F. Arnoldus and T. F. George, Phys. Rev. A 43, 3675 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

É. Lalor and E. Wolf, Phys. Rev. Lett. 26, 1274 (1971).
[CrossRef]

Surf. Sci. (1)

J. E. Sipe, Surf. Sci. 105, 489 (1981).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), App. III, p. 890.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the setup and wave vectors kt and k for a given observation angle θt.

Fig. 2
Fig. 2

Polar diagram of the intensity distribution dP/dΩ of the radiation, in units of P0, emitted by a dipole located two wavelengths above the surface and rotating in the xy plane. The indices of refraction are n1=1 and n2=2. The dashed line indicates the anticritical angle θac.

Fig. 3
Fig. 3

Intensity distribution for a dipole rotating in the xy plane and very close to the surface (H=0). The anticritical angle is 30°, and the indices of refraction are n1=1 and n2=2.

Fig. 4
Fig. 4

Intensity distribution for the same parameters as in Fig. 3 but for a linear dipole in the z direction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ESr=i8π20n12d2k1βk02n12d-d·kk×expik·r-Hez.
β=k02n12-k21/2k<k0n1ik2-k02n121/2k>k0n1.
β=k0n12-n22 sin2 θt1/2n2 sin θt<n1ik0n22 sin2 θt-n121/2n2 sin θt>n1.
sin θac=n1/n2.
f=PevPtr+Pev×100%,

Metrics