Abstract

We describe a mode-locked, diode-pumped Nd:YVO4 laser with a very long optical cavity operating at 1064 nm. High-modulation, InGaAs quantum-well, semiconductor saturable-absorber mirrors were used for passive mode locking, providing a stable train of 13-ps pulses. A novel zero-q-transformation multipass cell provided a variable-length optical cavity as much as 100 m long. The output beam had M2<1.1 at average powers of 4.1, 3.9, and 3.5 W at repetition rates of 4.1, 2.6, and 1.5 MHz, respectively. To the best of our knowledge the last of these is the lowest repetition rate ever generated directly from a mode-locked nonfiber solid-state laser without cavity dumping.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Schiller, X. M. Zhao, X. C. Liang, L. M. Wang, and R. R. Alfano, Appl. Opt. 28, 946 (1989).
    [CrossRef] [PubMed]
  2. J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
    [CrossRef]
  3. J. B. Deaton, Jr., and J. W. Wagner, Appl. Opt. 33, 1051 (1994).
    [CrossRef]
  4. D. Herriott, H. Kogelnik, and R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  5. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 417 (1999).
    [CrossRef]
  6. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 26, 560 (2001).
    [CrossRef]
  7. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999).
    [CrossRef]
  8. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  9. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett. 17, 505 (1992).
    [CrossRef] [PubMed]
  10. M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
    [CrossRef]
  11. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]

2001

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 26, 560 (2001).
[CrossRef]

1999

1994

1992

1990

J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
[CrossRef]

1989

1966

H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).
[CrossRef] [PubMed]

1964

Alfano, R. R.

Asom, M. T.

Bouma, B. E.

Boyd, G. D.

Chiu, T. H.

Cho, S. H.

Deaton, Jr., J. B.

J. B. Deaton, Jr., and J. W. Wagner, Appl. Opt. 33, 1051 (1994).
[CrossRef]

J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
[CrossRef]

Ferguson, J. F.

Fujimoto, J. G.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999).
[CrossRef]

Herriott, D.

Hönninger, C.

Ippen, E. P.

Jagadish, C.

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

Kärtner, F. X.

Keller, U.

Kogelnik, H.

Kolev, V.

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

Kompfner, R.

Lederer, M. J.

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

Li, T.

H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).
[CrossRef] [PubMed]

Liang, X. C.

Luther-Davies, B.

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999).
[CrossRef]

McKie, A. D. W.

J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
[CrossRef]

Miller, D. A. B.

Morgner, U.

Morier-Genoud, F.

Moser, M.

Paschotta, R.

Rode, A. V.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999).
[CrossRef]

Schiller, N. H.

Spicer, J. B.

J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
[CrossRef]

Tan, H. H.

M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, J. Phys. D 34, 2455 (2001).
[CrossRef]

Wagner, J. W.

J. B. Deaton, Jr., and J. W. Wagner, Appl. Opt. 33, 1051 (1994).
[CrossRef]

J. B. Deaton, Jr., A. D. W. McKie, J. B. Spicer, and J. W. Wagner, Appl. Phys. Lett. 56, 2390 (1990).
[CrossRef]

Wang, L. M.

Zhao, X. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual drawing of the cavity design (see also Fig. 2 for the key to schematic labels). For maximum clarity all spherical mirrors are represented by lenses. Two ZqT systems (a MPC and a 1:1 telescope) are incorporated into a waist-scaling system.

Fig. 2
Fig. 2

Diagram of the cavity layout for 1.5-MHz operation.

Fig. 3
Fig. 3

Oscilloscope trace of the output pulse train at (a) 4.1-MHz, (b) 2.6-MHz, and (c) 1.5-MHz repetition rates (with the same oscilloscope settings). Inset, intensity autocorrelation trace of 13-ps pulses FWHM.

Fig. 4
Fig. 4

(a) Horizontal and (b) vertical divergence of the output beam (squares) compared with an ideal Gaussian beam (solid curves). (c) Horizontal and (d) vertical far-field beam intensity profiles with a Gaussian fit.

Metrics