Abstract

A hybrid photonic-crystal structure is presented as a candidate for enhancing transmission through sharp photonic-crystal waveguide bends built on a perforated dielectric slab. This structure, which we refer to as a polycrystalline structure, combines two photonic-crystal lattices. Polycrystalline photonic-crystal structures offer the ability to minimize reflections as well as mismatches that a propagating wave might encounter while undergoing a sharp corner or a discontinuity between different waveguide sections. The availability of polycrystalline structures in photonic crystals opens a broad range of possibilities for the development of optical devices. Numerical experiments are performed with two- and three-dimensional finite-difference time domain methods.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
    [CrossRef]
  2. A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 40, 2247 (2001).
    [CrossRef]
  3. R. W. Ziolkowski, Opt. Quantum Electron. 31, 843 (1999).
    [CrossRef]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
    [CrossRef]
  5. A. Sharkawy, S. Shouyuan, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
    [CrossRef] [PubMed]
  6. A. Sharkawy, S. Shouyuan, D. W. Prather, and R. A. Soref, Opt. Express 10, 1048 (2002).
    [CrossRef] [PubMed]
  7. A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
    [CrossRef]
  8. O. Painter, A. Husain, A. Scherer, J. O’Brien, I. Kim, and P. D. Dapkus, J. Lightwave Technol. 17, 2082 (1999).
    [CrossRef]
  9. A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
    [CrossRef]
  10. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  12. M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
    [CrossRef]
  13. S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
    [CrossRef]

2002

2001

A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 40, 2247 (2001).
[CrossRef]

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

2000

M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

1999

Adibi, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Benisty, H.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Chen, C.

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

Dapkus, P. D.

Houdre, R.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Husain, A.

Karlsson, A.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Kim, I.

Koshiba, M.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Lee, R. K.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

Murakowski, J.

Noda, S.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

O'Brien, J.

Oesterle, U.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Olivier, S.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Painter, O.

Prather, D. W.

Pustai, D.

Qiu, M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Rattier, M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Sasaki, S.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Scherer, A.

Sharkawy, A.

Shi, S.

Shouyuan, S.

Smith, C. J. M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Soref, R. A.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Tsuji, Y.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Venkataraman, S.

Weisbuch, C.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Xu, Y.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

Yariv, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Ziolkowski, R. W.

R. W. Ziolkowski, Opt. Quantum Electron. 31, 843 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Bayindir, B. Temelkuran, and E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Electron. Lett.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Electron. Lett. 36, 1376 (2000).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

R. W. Ziolkowski, Opt. Quantum Electron. 31, 843 (1999).
[CrossRef]

Phys. Rev. B

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Conventional waveguide bend created in a hexagonal PhC lattice of air holes. (b) Simulation of the waveguide bend in (a) with the FDTD. (c) Transmission spectrum of the magnetic field sampled at a detector placed in the output waveguide in (b). (d) Image of experimental result of the bend in (a).

Fig. 2
Fig. 2

(a) Polycrystalline waveguide bend created in a hexagonal PhC lattice of air holes. (b) Simulation of the waveguide bend in (a) with the FDTD. (c) Transmission spectrum of the magnetic field sampled at a detector placed in the output waveguide in (b). (d) Image of experimental result of the bend in (a).

Fig. 3
Fig. 3

Steady-state field of a full 3D FDTD simulation for a polycrystalline PhC waveguide bend.

Metrics