Abstract

We investigate the spectral response of a Brillouin amplifier in the frequency regime within the stimulated-Brillouin-scattering (SBS) bandwidth. This is done by amplitude modulating the pump with a low frequency; therefore, unlike in previous studies, the spectrum of the modulated pump is, in all cases, smaller than the SBS bandwidth. We show both theoretically and experimentally that, unlike phase modulation, amplitude modulation increases the Brillouin amplifier gain and that this effect has a very narrow bandwidth. Only modulation frequencies that are lower than a certain cutoff frequency increase the gain. This cutoff frequency can be arbitrarily small.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
    [CrossRef]
  2. X. Zhou, H. Shalaby, L. Chao, T. Cheng, and P. Ye, J. Lightwave Technol. 18, 1453 (2000).
    [CrossRef]
  3. R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
    [CrossRef]
  4. A. Loayssa, D. Benito, and M. J. Garde, Opt. Lett. 25, 1234 (2000).
    [CrossRef]
  5. A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
    [CrossRef]
  6. M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
    [CrossRef]
  7. A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
    [CrossRef]
  8. A. Höök and A. Bolle, J. Lightwave Technol. 10, 493 (1992).
    [CrossRef]
  9. L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics (Academic, London, 1992).

2000 (2)

1998 (1)

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

1996 (1)

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

1995 (1)

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

1992 (1)

A. Höök and A. Bolle, J. Lightwave Technol. 10, 493 (1992).
[CrossRef]

1990 (1)

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

1989 (1)

A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
[CrossRef]

1986 (1)

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Bao, X.

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Benito, D.

Bolle, A.

A. Höök and A. Bolle, J. Lightwave Technol. 10, 493 (1992).
[CrossRef]

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, London, 1992).

Chao, L.

Chen, L.

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Cheng, T.

Daino, B.

A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
[CrossRef]

Dreyer, K. F.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Eskildsen, L.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

Garde, M. J.

Grosso, G.

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
[CrossRef]

Hansen, P. B.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Höök, A.

A. Höök and A. Bolle, J. Lightwave Technol. 10, 493 (1992).
[CrossRef]

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

Koren, U.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Loayssa, A.

Martinelli, M.

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

Miller, B. I.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Nakashima, T.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Seikai, S.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Shalaby, H.

Shibata, N.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Tsubokawa, M.

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Williams, K. J.

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

Ye, P.

Young, M. G.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

Zhou, X.

Electron. Lett. (4)

A. Bolle, G. Grosso, and B. Daino, Electron. Lett. 25, 2 (1989).
[CrossRef]

M. Tsubokawa, S. Seikai, T. Nakashima, and N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

A. Höök, A. Bolle, G. Grosso, and M. Martinelli, Electron. Lett. 26, 470 (1990).
[CrossRef]

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, Electron. Lett. 32, 1387 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, London, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the system.

Fig. 2
Fig. 2

Frequency response of the ac part of the amplified Stokes signal, where fiber 1 and fiber 2 were 2 and 1 km long, respectively. The dc gain level is equal to the gain at f.

Fig. 3
Fig. 3

Frequency response of the ac part of the amplified Stokes signal, where fiber 1 and fiber 2 were 1 and 2 km long, respectively. The dc gain level is equal to the gain at f.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A2z+1c/nA2t=iωγe2ncρ0ρ*A1,
ρz,t=iγeq24πA1A2*ΩBΓB
I2z+1c/nI2t=g0I1z,tI2,
g0ω2γe22nc3vρ0ΓB,
I1z,t=I1L1+cos2πfzn/c+t,
lnI2z,tC1 sin2πfzn/c+t+C2 sin2πfzn/c-t+C3 cos2πfzn/c-t+C4zn/c+t+C5zn/c-t
I2L=I20expG1+cos2πftsin2πfnL/c2πfnL/c,
ΔI2=2I20expGsinhGsinπf/fcπf/fc,
fcc/2nL

Metrics