Abstract

The phenomenon colloquially known as a fiber fuse occurs when an optical fiber carrying high power is damaged or in some way abused. Beginning at the damage site a brilliant, highly visible plasmalike disturbance propagates back toward the optical source at speeds ranging from 0.3 to 3 m/s, leaving in its wake a trail of bubbles and voids. We suggest that the bubble tracks in fused fibers are the result of a classic Rayleigh instability that is due to capillary effects in the molten silica that surrounds the vaporized fiber core. We report measurements of the bubble distribution and the collapse time that are consistent with this contention.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Hand and P. St. J. Russell, Opt. Lett. 13, 767 (1988).
    [CrossRef] [PubMed]
  2. R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
    [CrossRef]
  3. T. J. Driscoll, J. M. Calo, and N. M. Lawandy, Opt. Lett. 16, 1046 (1991).
    [CrossRef] [PubMed]
  4. D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
    [CrossRef]
  5. R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
    [CrossRef]
  6. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford U. Press, Oxford, 1961), Chap. XII.
  7. Lord Rayleigh, Nature 95, 66 (1915).
    [CrossRef]
  8. J. F. Bacon, A. A. Hasapis, and J. W. Wholley, Tech. Rep. TR-9(7)-59–35 (Avco R&D Corporation, Wilmington, Mass., 1959).
  9. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986).
  10. B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge U. Press, Cambridge, 1975), Chap. 5.
  11. H. A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994) ; see Figs. 5 and 6.
    [CrossRef]
  12. G. I. Taylor, Proc. R. Soc. London Ser. A 146, 501 (1934).
    [CrossRef]
  13. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1976), p. 55.
  14. C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, New York, 1992), p. 135.

2000

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

1997

D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

1994

H. A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994) ; see Figs. 5 and 6.
[CrossRef]

1991

1988

1934

G. I. Taylor, Proc. R. Soc. London Ser. A 146, 501 (1934).
[CrossRef]

1915

Lord Rayleigh, Nature 95, 66 (1915).
[CrossRef]

Bacon, J. F.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, Tech. Rep. TR-9(7)-59–35 (Avco R&D Corporation, Wilmington, Mass., 1959).

Bansal, N. P.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986).

Blow, K. J.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Calo, J. M.

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1976), p. 55.

Chandrasekhar, S.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford U. Press, Oxford, 1961), Chap. XII.

Davis, D. D.

D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

DiGiovanni, D. G.

D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Doremus, R. H.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986).

Driscoll, T. J.

Hand, D. P.

Hasapis, A. A.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, Tech. Rep. TR-9(7)-59–35 (Avco R&D Corporation, Wilmington, Mass., 1959).

Isenberg, C.

C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, New York, 1992), p. 135.

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1976), p. 55.

Kashyap, R.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Lawandy, N. M.

Lawn, B. R.

B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge U. Press, Cambridge, 1975), Chap. 5.

Mettler, S. C.

D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Percival, R. M.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Rayleigh, Lord

Lord Rayleigh, Nature 95, 66 (1915).
[CrossRef]

Russell, P. St. J.

Sikora, E. S. R.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Stone, H. A.

H. A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994) ; see Figs. 5 and 6.
[CrossRef]

Taylor, G. I.

G. I. Taylor, Proc. R. Soc. London Ser. A 146, 501 (1934).
[CrossRef]

Wholley, J. W.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, Tech. Rep. TR-9(7)-59–35 (Avco R&D Corporation, Wilmington, Mass., 1959).

Wilshaw, T. R.

B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge U. Press, Cambridge, 1975), Chap. 5.

Wyatt, R.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Annu. Rev. Fluid Mech.

H. A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994) ; see Figs. 5 and 6.
[CrossRef]

Electron. Lett.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Nature

Lord Rayleigh, Nature 95, 66 (1915).
[CrossRef]

Opt. Lett.

Proc. R. Soc. London Ser. A

G. I. Taylor, Proc. R. Soc. London Ser. A 146, 501 (1934).
[CrossRef]

Proc. SPIE

D. D. Davis, S. C. Mettler, and D. G. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Tech. Rep.

J. F. Bacon, A. A. Hasapis, and J. W. Wholley, Tech. Rep. TR-9(7)-59–35 (Avco R&D Corporation, Wilmington, Mass., 1959).

Other

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, Orlando, Fla., 1986).

B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge U. Press, Cambridge, 1975), Chap. 5.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1976), p. 55.

C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, New York, 1992), p. 135.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford U. Press, Oxford, 1961), Chap. XII.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Damage sites created in a single-mode fiber transmitting 2 W of power at 488 nm. This photograph was recorded after the sample had been polished to reveal the true void shape. The fiber core size is 10 µm, and the mean spacing between the voids is 12.2 µm. Individual voids in the image are approximately 4.78 µm long and 3.6 µm in diameter. In this picture the light source is at the right and the fuse propagates from left to right. Flattening of the bubbles is believed to be caused by the longitudinal temperature gradient that moves with the fuse. (b) Onset of a varicose instability in a fused fiber. The mean spacing of the disturbance is 11.4 µm, suggesting a cavity of 1.76 µm in diameter in the molten glass. The bubble immediately to the right of the void is 1.85 µm in diameter, and that to the left is 3.5 µm.

Fig. 2
Fig. 2

Fuse that was initiated at the end of a fiber but failed to propagate. Note the spherical end zones, indicating the influence of surface tension and the almost parallel sides of the central void. In the fluid mechanics literature this behavior is termed end pinching.11 The void volume is 915 µm3, and the end depression is 950 µm3; the undisturbed core size is 9 µm.

Fig. 3
Fig. 3

Thermal diffusion into a cylinder13 initially at T=0, from a region r1 initially at T=1. The numbers beside the curves are values of dimensionless time κt/r02.

Fig. 4
Fig. 4

Bubble wavelength (spacing) and fuse speed as functions of power density at 1480 nm.

Tables (1)

Tables Icon

Table 1 Thermophysical Properties of Silica at ∼2500 Ka

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ02=Tr03ρxK1xK0x1-x2.
λ=2πr00.48413r0.
σ0=0.820Tr03ρ1/2.
ν=WAρCpΔθ.

Metrics