Abstract

Shift multiplexing is a holographic recording method that uses a spherical reference wave. We extend the principle to a thin slab of holographic material that acts as a waveguide. Total internal reflection folds the reference spherical beam in one dimension. We demonstrate that the shift selectivity with the folded spherical beam is independent of the slab thickness but depends instead on the numerical aperture of the coupled spherical wave. A shift selectivity of 0.5 µm has been achieved with a 1-mm-thick LiNbO3 crystal and 50 high-definition data pages are recorded with this method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hesselink and S. Redfield, Opt. Lett. 13, 877 (1988).
    [CrossRef] [PubMed]
  2. F. T. S. Yu, F. Zhao, H. Zhou, and S. Yin, Opt. Lett. 18, 1849 (1993).
    [CrossRef] [PubMed]
  3. K. H. Kim, H-S. Lee, and B. Lee, Opt. Lett. 23, 1224 (1998).
    [CrossRef]
  4. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, Opt. Lett. 20, 782 (1995).
    [CrossRef] [PubMed]
  5. G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
    [CrossRef] [PubMed]
  6. G. J. Steckman, A. Pu, and D. Psaltis, Appl. Opt. 40, 3387 (2001).
    [CrossRef]
  7. V. Markov, J. Millerd, and J. Trollinger, Opt. Lett. 24, 265 (1999).
    [CrossRef]
  8. S. Q. Tao, Z. Q. Jiang, and Q. Yuan, Chin. Phys. Lett. 17, 675 (2000).
    [CrossRef]
  9. A. Pu and D. Psaltis, Appl. Opt. 35, 2389 (1996).
    [CrossRef] [PubMed]
  10. L. Dhar, A. Hale, H. Katz, M. L. Schilling, M. Schnoes, and F. C. Schilling, Opt. Lett. 24, 487 (1999).
    [CrossRef]
  11. G. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, Opt. Lett. 25, 607 (2000).
    [CrossRef]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 249.

2001 (1)

2000 (2)

1999 (2)

1998 (1)

1996 (2)

1995 (1)

1993 (1)

1988 (1)

Barbastathis, G.

Berezhnaya, V.

Curtis, K.

Dhar, L.

Gerasimova, T.

Hale, A.

Hesselink, L.

Jiang, Z. Q.

S. Q. Tao, Z. Q. Jiang, and Q. Yuan, Chin. Phys. Lett. 17, 675 (2000).
[CrossRef]

Katz, H.

Kim, K. H.

Lee, B.

Lee, H-S.

Levene, M.

Markov, V.

Millerd, J.

Psaltis, D.

Pu, A.

Redfield, S.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 249.

Schilling, F. C.

Schilling, M. L.

Schnoes, M.

Shelkovnikov, V.

Solomatine, I.

Steckman, G.

Steckman, G. J.

Tao, S. Q.

S. Q. Tao, Z. Q. Jiang, and Q. Yuan, Chin. Phys. Lett. 17, 675 (2000).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 249.

Trollinger, J.

Yin, S.

Yu, F. T. S.

Yuan, Q.

S. Q. Tao, Z. Q. Jiang, and Q. Yuan, Chin. Phys. Lett. 17, 675 (2000).
[CrossRef]

Zhao, F.

Zhou, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Shift multiplexing in the 90° geometry. (b) Shift multiplexing by total internal reflection in a crystal slab.

Fig. 2
Fig. 2

Graphic representation of the unfolded cylindrical wave.

Fig. 3
Fig. 3

Shift selectivity for different locations zi i=1,2,3 along the slab. (a) N.A. of the reference wave is 0.18. (b) N.A. is 0.65.

Fig. 4
Fig. 4

(a) Setup for the 50 shift-multiplexed holograms. (b) Readout of 50 shift-multiplexed holograms in the slab crystal and sample reconstruction of hologram 20.

Fig. 5
Fig. 5

Application of folded shift multiplexing to flat memory architectures. The natural N.A. of the vertical cavity surface emitting laser (VCSEL) array or the laser diode (LD) array is used as the spherical reference wave.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ=λz0L,
tanϕ2=sin2 θcsin2 θ-1;
Φθ=zD/θϕθ.
Rx,z=1jλzexpj2πzλ×expjπy2λz1-2λπD sin θc×expjπyD.
δ=λ2N.A.,

Metrics